CONTENTS

List of Figure	es	xvii-xxi
List of Tables	S	xxiii
List of Abbreviations		xxv-xxviii
List of Symbols		xxix-xxx
Preface		xxxi-xxxii
CHAPTER Introduction	1 n and Scope of the Thesis	1-38
1.1	Organic Electronics	3
1.2	Organic Semiconductors	5
1.2.1	Conjugated Polymers	6
1.2.2	Conjugated Polymers as Semiconductor	8
1.2.3	Conduction Mechanism in Conjugated Polymers	8
1.2.3.1	Band Transport	11
1.2.3.2	Hopping Transport	11
1.2.3.3	Polaronic Transport	11
1.2.3.4	Disorder-Controlled Transport	12
1.2.4	Thin Film Deposition Techniques for Conjugated Polymers	13
1.2.5	Thin Film Characterization of Conjugated Polymers	15
1.2.5.1	Scanning Probe Microscopy	15
1.2.5.2	Scanning Electron Microscopy	17
1.2.5.3	Transmission Electron Microscopy	17
1.2.5.4	X-Ray Diffraction	18
1.2.5.5	Cyclic Voltammetry	19
1.2.5.6	Fourier Transform Infrared Spectroscopy	20
1.2.5.7	Spectrophotometry	20

1.2.5.8	UV-Visible Spectroscopy	21
1.2.5.9	Photoluminescence Spectroscopy	22
1.3	Organic Thin Film Devices	22
1.3.1	Basic Fabrication Steps for 2-Terminal and 3-Terminal Devices	23
1.3.2	Organic Device Characterization Tools	25
1.3.3	Organic Thin Film Device Applications	26
1.3.3.1	Gas Sensors	26
1.3.3.2	Light Sensors (Photodetectors)	28
1.4	Literature Review	29
1.4.1	Review of Organic Thin Film Devices	29
1.4.2	Review of OTFDs Based Gas Sensors	32
1.4.3	Review of OTFDs Based Photodetectors	34
1.4.4	Major Observation from the Literature Survey	34
1.5	Challenges in OTFDs for Sensing Applications	36
1.6	Motivation and Problem Definition	36
1.7	Scope of the Thesis	37
CHAPTER		39-57
	nd Gas Sensing Properties of PQT-12 Based Metal-Semiconduct	or-
Metal Devic	e	
2.1	Introduction	41
2.2	Experimental Details	42
2.2.1	Materials and Thin Film Deposition	42
2.2.2	Device Fabrication	43
2.3	Results and Discussion	44
2.3.1	Thin Film Characterization	44
2.3.2	Electrical Characterization	48

2.3.3	Gas Sensing Characterization	49
2.3.3.1	Ammonia Gas Response of MSM Sensor	50
2.3.3.2	Nitrogen Dioxide Gas Response of MSM Sensor	53
2.3.3.3	Selectivity of MSM Sensor	56
	•	
2.4	Conclusion	57
CHAPTER	3	59-74
Electrical a	nd Ammonia Gas Sensing Properties of Pristine PQT-	12 and PQT-
12/CdSe QI	Os Composite Based Organic Thin Film Transistors	
3.1	Introduction	61
3.2	Experimental Details	62
3.2.1	Thin film Deposition and OTFT Fabrication	62
3.3	Results and Discussion	64
3.3.1	Thin Film Characterization	64
3.3.2	Electrical Characterization	66
3.3.3	Gas Sensing Characterization	70
3.4	Conclusion	73
CHAPTER	4	75-91
Electrical a	nd Ammonia Gas Sensing Properties of PQT-12 Based	Organic Thin
Film Transi	istors Fabricated by Floating-Film Transfer Method	
4.1	Introduction	77
4.2	Experimental Details	78
4.2.1	Thin Film Deposition	78
4.2.2	Fabrication of Organic Thin Film Transistor	79
4.3	Results and Discussion	81
4.3.1	Thin Film Characterization	81
4.3.2	Electrical Characterization	81

4.3.3	Gas Sensing Characterization	84
4.4	Conclusion	90
СНАРТЕ	R 5	93-105
Electrical	and Optical Properties of PQT-12 Based Organic Thin F	ilm Transistor
Fabricate	d by Floating Film Transfer Method	
5.1	Introduction	95
5.2	Experimental Details	96
5.2.1	Thin Film Deposition and OTFT Fabrication	96
5.3	Results and Discussion	97
5.3.1	Thin Film Characterization	97
5.3.2	Electrical Characterization	99
5.3.3	Optical Characterization	100
5.4	Conclusion	104
СНАРТЕ	R 6	107-113
Conclusio	n and Future Scope	
7.1	Introduction	109
7.2	Chapter-Wise Major Observations	109
7.3	Future Scope of Work	113
References		115-131
Author's Relevant Publications		133-134