LIST OF FIGURES

Figure No.	Description	Page No.
Figure 1.1	Flow-sheet for Recovery of zinc and production of jarosite waste by Roasting-Leaching-Electro-winning process	04
Figure 1.2	A pictorial view of disposal practice of jarosite (jarofix): (a) Disposed yard; (b) Embankment	05
Figure 1.3	Location of experimental jarofix test section	13
Figure 1.4	Remote sensing study used for identification of sources of acidic drainage	16
Figure 2.1	A photograph of jarosite	27
Figure 2.2	Grain size distribution chart of jarosite and GGBS	28
Figure 2.3	A photograph of ground granulated blast furnace slag	29
Figure 2.4	A photograph of hydrated lime powder	30
Figure 2.5	Flow diagram illustrates the methodology adopted	32
Figure 2.6	Flow diagram of the various studies undertaken	34
Figure 2.7	Density bottle for determination of specific gravity	35
Figure 2.8	Hydrometer for particle size distribution	36
Figure 2.9	Casagrande apparatus for determination of liquid limit	37
Figure 2.10	A photograph showing different parts of mini compaction equipment	38
Figure 2.11	Permeability test apparatus with all parts	39
Figure 2.12	Differential free swell index test setup	40
Figure 2.13	UCS mold with accessories	41

Figure 2.14	Laboratory experimental setup for UCS test	42
Figure 2.15	Laboratory experimental setup for Brazilian split tensile test	43
Figure 2.16	Samples preparation for strength study: (a) USC samples; (b) Tensile samples; (c) Samples kept in a polythene bag for curing	44
Figure 2.17	Samples preparation for durability study: (a) Deep freezer; (b) Frozen samples kept for thawing	46
Figure 2.18	A photograph of high-resolution X-Ray diffractometer (Rigaku Miniflex 600, Germany)	48
Figure 2.19	A photograph of high-resolution scanning electron microscope (SUPRA 40, Zeiss 4.0)	49
Figure 2.20	A photograph showing Thermo Scientific iCAP6200 Duo inductively coupled plasma spectrophotometer	50
Figure 3.1	Compaction characteristics of jarosite with GGBS: (a) Effect of GGBS on dry density and moisture content; (b) Variation of MDD and OMC with GGBS	52
Figure 3.2	Compaction characteristics of jarosite-lime blends (0% GGBS): (a) Effect of lime on dry density and moisture content; (b) Variation of MDD and OMC with lime	54
Figure 3.3	Compaction characteristics of jarosite-10% GGBS blend with lime: (a) Effect of lime on dry density and moisture content; (b) Variation of MDD and OMC with lime	55
Figure 3.4	Compaction characteristics of jarosite 20% GGBS with lime: (a) Effect of lime on dry density and moisture content; (b) Variation of MDD and OMC with lime	56
Figure 3.5	Compaction characteristics of jarosite-30% GGBS with lime, (a) Effect of lime on dry density and moisture content; (b) Variation of MDD and OMC with lime	57
Figure 3.6	Effect of GGBS content on strength of jarosite with all curing period: (a) UCS (q_u) and, (b) Split tensile strength (q_t)	60

- Figure 3.7 Effect of lime content on stress-strain behaviour of 62-64 stabilized samples cured at 28 days during UCS test (a) 0%
 Lime (Jarosite-GGBS), (b) 0% GGBS, (b) 10% GGBS, (d) 20% GGBS & (e) 30% GGBS
- Figure 3.8 Figure 3.8 Effect of lime content on stress-strain behaviour of 65-67 stabilized samples cured at 28 days during split tensile strength test (a) 0% Lime (Jarosite-GGBS), (b) 0% GGBS, (c) 10% GGBS, (d) 20% GGBS & (e) 30% GGBS
- Figure 3.9 Variation in UCS, q_u with various lime content, GGBS content 68-69 and curing period: (a) 0% GGBS (jarosite-lime); (b) 10% GGBS; (c) 20% GGBS, and (d) 30% GGBS
- Figure 3.10 Relationship among q_u, t and L for various GGBS content 70
- Figure 3.11 Variation in split tensile strength, qt with various lime content, 71-72
 GGBS content and curing period: (a) 0% GGBS (jarosite-lime);
 (b) 10% GGBS; (c) 20% GGBS, and (d) 30% GGBS
- Figure 3.12 Relationship among qt, t and L for various GGBS content 73
- Figure 3.13 Relationship between unconfined compressive strength (q_u) and 74 split tensile strength (q_i) with various lime content (L), GGBS content (G), and curing period (t)
- Figure 3.14 Variation in UCS (q_u) of untreated jarosite with freezing-77 thawing cycles
- Figure 3.15 Variation in UCS of treated jarosite with F-T cycles and curing 78-79 periods
- Figure 3.16 Variation in weight loss of treated jarosite with F-T cycles: (a) 81 7 Days curing period; (b) 28 Days curing period
- Figure 3.17 XRD images of: (a) Jarosite; (b) GGBS; (c) Jarosite with 10% 84-85 Lime (Jarosite with 0% GGBS); (d) Jarosite with 30% GGBS and 10% Lime

- Figure 3.18 SEM images (Magnification = 20 kx) of jarosite-GGBS-lime 87-90 mixture: (a) jarosite; (b) GGBS; (c) Lime; (d) jarosite-GGBS mixture (30% GGBS at 90 days curing); (e) jarosite-lime mixture (10% lime at 90 days curing); (f) jarosite-lime mixture (after durability); (g) jarosite-GGBS-lime mixture (30% GGBS- 10% lime at 90 days curing), and (h) jarosite-lime-GGBS mixture (after durability)
- Figure 3.19 SEM-EDX images of: (a) jarosite; (b) jarosite-GGBS mixture 92 (30 % GGBS at 90 days curing); (c) jarosite-lime mixture (10% lime at 90 days curing), and (d) jarosite-GGBS-lime mixture (30 % GGBS at 10% lime at 90 days curing.
- Figure 3.20 Heavy metal immobilization potential of stabilized jarosite: (a) 94-95 Before durability, and (b) After the durability
- Figure 4.1 Photographs showing: (a) Stabilized jarosite bricks; (b) Bricks 101 before curing; (c) Bricks after curing, and (d) Automatic universal testing machine used for compressive strength test
- Figure 4.1 Flow chart of the construction procedure for GGBS-lime 104 treated jarosite embankment