
Chapter 5

A Constant Throughput

Architecture

This chapter presents a constant throughput 32-point integer DCT architecture to

achieve almost equal processing time at each quadtree depth level. The proposed 1D

DCT architecture uses resource sharing technique to compute single 32-point or two

16-point or four 8-point or eight 4-point DCTs at a time. Therefore, it is possible

to attain a constant throughput, 32 samples per clock, irrespective of the transform

size. The proposed modified 2D DCT architecture requires 2N + 1 clock cycles to

process 32
N blocks of N ×N pixels.

5.1 Introduction

HEVC is the most complex encoder and RDO [94] is one of the most complicated

tasks in it. This task takes many decisions in order to produce optimum coding

117

Chapter 5. A Constant Throughput Architecture for HEVC 118

efficiency. TU size selection is one of them. Residual blocks are recursively parti-

tioned into transform blocks during RDO process and they are represented by RQT

as discussed in Chapter 1. Thus, the size of the TU varies from 4 × 4 to 32 × 32.

All the RQT levels are tested to decide the optimum TU size during RDO process.

Therefore, RD cost is computed several times for each quadtree structure: once for

the 32×32 TU, 4 times for the 16×16 TU, 16 times for the 8×8 TU and 64 times 4×4.

These variable block-size transforms and variable RQT depth increase computational

complexity as well as processing time. To reduce this computational burden, some

early termination algorithms are proposed [114, 115] which compare transformed

coefficients with respect to a threshold value. However, those algorithms also need

to compute RD cost at each RQT level for the worst case.

A statistic has been presented in Chapter 4 (Table 4.1) revealing the rate of the

different size of DCTs computed during video encoding using HEVC reference soft-

ware. From this table It is observed that for any encoder configuration lower order

of DCTs are performed very often than that of the higher-order irrespective of the

video resolution. On an average more than 50% of times 4-point DCT is performed,

whereas 32-point DCT is performed less than 2% of time. The reason behind this

is that the RD cost is calculated by splitting each block into four child blocks and

each block is transformed iteratively [11]. It implies that most of the time RD cost

is calculated up to the highest depth level of RQT. However, the throughput of

the transform core varies according to the size of TU and it is the least for the

lower order DCT at the highest RQT depth. Therefore, an efficient high throughput

architecture is required especially for lower order DCT.

Lot of work has been done to realize DCT architecture in VLSI. The primary focus

of those articles is to handle different size of transforms with high throughput and

to reduced the hardware complexity. However, most of the those designs follow the

Chapter 5. A Constant Throughput Architecture for HEVC 119

Figure 5.1: A generalized model for N-point 1D DCT

hierarchical structure in which N
2 -point DCT module is embedded in N -point DCT

architecture as shown in Fig. 5.1. Hence, a single kernel of 32-point DCT is used

in which all the lower size transforms are embedded [66]. Fig. 3.6 in Chapter 3

depicts a typical hardware sharing model used in HEVC core transform [66]. It uses

hardware of even coefficient calculation to compute lower order DCT. Rest of the

hardware resources remain idle during this time. Hence, majority of the hardware

resources of the transform core remain idle during 4 and 8 -point DCT computations

and the throughput varies with TU size.

In [68], an additional N
2 -point unit is used with each N-point DCT unit to achieve

constant throughput irrespective of the TU size. This necessitates extra hardware.

A reconfigurable architecture is proposed in [73] wherein an approximate DCT like

transform is used and any N-point transform can be derived from a pair of N
2 -point

transform. In [74], an approximate 4-point DCT is used as a basic unit and all higher

order DCTs are derived from it, such that any N -point unit can be utilized as two

N
2 -point units. However, approximation compromises with the DCT properties and

results in low quality video.

Chapter 5. A Constant Throughput Architecture for HEVC 120

To support high resolution for future video coding, the transform architecture through-

put can be increased by efficient use of existing hardware resources. This chapter

presents a DCT architecture for HEVC which is based on hardware sharing method-

ology to achieve high throughput with the minimum number of logic resources. It

also provides almost constant throughput for all size of the TU. The advantages of

the proposed architecture are as follows:

1. The proposed architecture requires almost equal processing time at each RQT

level which improves the speed of the RDO process.

2. Significant energy is consumed by transform and quantization unit during

RDO process as HEVC profiling results show that a large amount of time is

spent in the TComTrQuant class [14]. As the proposed architecture reduces

the processing time, energy consumption reduction is possible by adopting

methods like clock-gating, data-gating, etc.

3. Almost all the hardware resources are fully utilized irrespective of the TU size.

Consequently, the throughput of the DCT architecture remains constant and

average power consumption per unit throughput remains the same for all size

of the TU.

5.2 Proposed Architecture

A method to share datapath of 1D DCT architecture and its hardware implemen-

tation are discussed in this section. Fig. 5.2 shows the hardware resource sharing

scheme employed in CN unit. The method is applied on integer DCT for its pop-

ularity in HEVC. Typically, IB unit uses separate adders and subtractors in any

Chapter 5. A Constant Throughput Architecture for HEVC 121

Figure 5.2: Shared datapath for N-point (a) DCT Module (b) Proposed Odd
DCT Module

hierarchical DCT architecture [68], as shown in Fig. 5.1. However, in the proposed

architecture, all the subtractors in IB unit have been replaced by adder–subtractors

so that it can produce all an and bn during N
2 -point DCT. At this instance, subset of

the input lines {xN
2
, xN

2
+1,⋯, xN−1} behave like other input set {x′0, x

′
1,⋯, x

′
N
2
−1}. To

clear this point, these terms are written within bracket in Fig. 5.2(a). The datapath

of BN
2

is shared with an unrolled CN
4

and a BN
4

unit to realize an extra CN
2

unit as

shown in Fig. 5.2(b). Thus, hardware used to compute odd coefficients of a N-point

DCT can compute a complete N
2 -point DCT. Similarly, BN

4
can be further shared

with next lower order DCT. For example, the datapath of B16 is shared with an

unrolled C8 and a B8. Further, a B8 can be shared with an unrolled C4 and a B4

and so on. This resource sharing process continues up to 4-point DCT.

An unrolled N
4 -point DCT can be used to produce two N

8 -point DCTs by using an

additional multiplexer. The equation for even coefficients in an unrolled N
4 -point

Chapter 5. A Constant Throughput Architecture for HEVC 122

Figure 5.3: Shared datapath for 8-point DCT Module (a) Even unit (b) Odd
unit (c) MCM-0 and MCM-3 (d) MCM-1 and MCM-2

DCT can be written as

[Y
N
4

2n] = [CN
8

]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x0

x1

⋮

xN
8
−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ [CN
8

]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xN
4
−1

xN
4
−2

⋮

xN
8

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= E0 +E1, (5.1)

where E0 and E1 represent two different outputs of N
8 -point DCT iff x0, x1,, xN

8
−1

and xN
4
−1, xN

4
−2,, xN

8
represent two different inputs, respectively. Thus, a N-point

odd DCT unit can be used as either one N
2 -point or two N

4 -point or four N
8 -point

DCT units. A two bits input signal SEL is used to select the size of the DCT. An

example of 8-point DCT architecture has been discussed in the following subsection.

Chapter 5. A Constant Throughput Architecture for HEVC 123

5.2.1 8-point DCT architecture

A 8-point DCT comprises of a C4 and a B4 unit to compute even and odd coefficients,

respectively. Usually, only C4 unit is recursively used to calculate DCT of lower size

kernel and B4 unit remains idle [68]. It is because out of eight inputs {x0, x1,⋯, x7}

only four inputs {x0, x1, x2, x3} are multiplexed with {a0, a1, a2, a3}, as shown in

Fig. 5.3(a). Here, value of {a0, a1, a2, a3} is calculated according to (3.25). Select

signal tr4/tr8 is used to choose an appropriate set of inputs depending on the size

of transform under process.

If B4 unit remains idle, its all hardware resources are underutilized. To avert this

situation, B4 unit is also used to compute another 4-point DCT in the proposed

architecture. Further, its datapath is shared with an unrolled C2 and B2 units as

shown in Fig. 5.3(b). Hardware resources in the B4 unit are also exploited with

additional multiplexers. However, the MCMs must be modified as DCT coefficients

differ depending on the operation to be performed. For this purpose, ith and (N −

1 − i)th MCMs are included in the same datapath due to following relation.

∣bij ∣ = ∣b(N−i−1)(N−j−1)∣ (5.2)

Here, bij represents (i, j)th coefficient in matrix BN
2

and ith MCM produces all the

bij coefficients. Therefore, MCM-0 and MCM-3 are included in the datapath shared

by B4 or unrolled C2. These MCMs are capable of performing multiplication with

constant sets {89,75,50,18} and {64,64} during 8- and 4- point DCT, respectively.

Similarly, MCM-1 and MCM-2 are included in the datapath shared by B4 and B2 i.e.

they perform multiplication with constant sets {89,75,50,18} and {83,36} during

8- and 4- point DCT, respectively. Hence, different type of MCMs are required.

Chapter 5. A Constant Throughput Architecture for HEVC 124

Fig. 5.3(c) and 5.3(d) depict modified architecture of these MCMs. A control signal

tr4/tr8 is used to select the type of DCT to be performed.

Here, outputs of the IB unit are fed to the MCMs and those are also shared to

produce all bn during 8-point DCT or all an and bn for 4-point DCT. To accomplish

this, subtractors in the IB unit are replaced by add-sub units and multiplexers are

used at the input side. At the output tree, some of the adders and subtractors are

replaced with the add-sub units to perform addition or subtraction operation during

different size of DCT calculation.

5.2.2 Higher order DCT architecture

Aforementioned datapath sharing method has been adopted in the proposed DCT

architecture and almost all resources are fully utilized. Complete datapath of 32-

point odd DCT unit is shared with unrolled C8 and B8. Similarly, B8 is further

shared with C4 and B4 and so on. This datapath sharing scheme is shown in Fig.

5.4. It is clear from this figure that a 32-point odd DCT unit is divided into four

datapaths. Similarly, 16-point odd DCT unit gets divided into three datapaths as

represented by the shaded area in Fig. 5.4. These datapaths produce all necessary

intermediate values or DCT coefficients depending on the type of DCT applied. For

example, datapaths P2, P3, P4 altogether produce two sets of 4-point DCT coeffi-

cients or a single set of 8-point DCT coefficients or 16-point odd DCT coefficients

or intermediate values for 32-point odd DCT coefficients depending on the control

signal.

In the proposed architecture datapath sharing is achieved by

1. Reconfiguring MCM units

Chapter 5. A Constant Throughput Architecture for HEVC 125

Figure 5.4: Proposed datapath of a 32-point odd DCT unit

2. Sharing IB unit and

3. Sharing output adder trees

5.2.2.1 Reconfigurable MCM design

There are 16 MCMs in a 32-point DCT [68], out of those 8 lie in datapath P1 and

rest of them lie in datapath P2, P3 and P4. From Fig. 5.4 it is clear that the path P1

comprises of B16 and unrolled C8 units. Hence, MCMs in this path must be capable

of producing two sets of coefficients. However, path P2 comprises of B16, B8 and

unrolled C4. It means the MCMs in this path must be capable of producing three

sets of coefficients. It is also clear from Fig. 5.4 that MCMs utilized in P3 and P4

must be capable of computing coefficients for all size of DCT. Consequently, they

form the critical path.

Criteria to select MCMs for a particular datapath has been discussed in subsection

5.2.1. Datapaths in a 32-point odd DCT unit and MCMs corresponding to them are

listed in Table 5.1. Here, Mi represents ith MCM responsible for generating all the

bij coefficients. There is slight variation in the MCMs used in a particular datapath.

Therefore, there is a separate type of MCM for each datapath.

Chapter 5. A Constant Throughput Architecture for HEVC 126

Constant multiplication in each MCM is realized by A-operation [69] which can be

written as

A(u, v) = ∣2l1u + (−1)s2l2v∣2−r. (5.3)

Here, u and v are already realized or intermediate constants. l1, l2, and r are positive

integers. Here, s ∈ {0,1} decides either addition or subtraction operation. The out-

come of A-operation is either a constant to be realized or an intermediate constant.

Thus, shift and add operations are enough to realize all constant multiplications.

MCMs in the proposed architecture are designed such that critical path comprises

of two adders only. This can be treated as area optimized MCM with constrained

delay problem [116]. Next, MCMs in the proposed architecture are reconfigured

by inserting multiplexers so that adders can be shared. Design of MCMs lying in

datapath P4 is shown in Fig. 5.5. The same design approach is used to implement

the rest of the MCMs.

5.2.2.2 IB unit sharing

Outputs of the IB are shared to facilitate the reuse of MCM as described above. A

portion of the shared IB output in datapath P3 and P4 is shown in Table 5.2. After

multiplying by four different constant sets, these output lines produce four different

Table 5.1: MCM picked by different datapaths

Datapath MCMs
P1 M2, M13, M5, M10, M3, M12, M6, M9

P2 M1, M14, M4, M11

P3 M0, M15

P4 M7, M8

Chapter 5. A Constant Throughput Architecture for HEVC 127

Figure 5.5: Architecture of MCM in datapath P4

DCT coefficients (or intermediate value of coefficients) during different size of DCT

calculation as follows:

Y N
n = ±c0 ×O0 ± c1 ×O1 ± c2 ×O2 ± c3 ×O3. (5.4)

For example, during 4, 8, 16, and 32 -point DCT calculation {c0, c1, c2, c3} is equal

to {64,64,83,36}, {89,18,75,50}, {87,25,80,43}, and {88,22,78,46}, respectively.

Thus, it is possible to produce two 4-point DCT coefficients Y 4
0 and Y 4

1 or a single

8-point DCT coefficient Y 8
1 or intermediate value of 16- and 32- point DCT Y 16

3 and

Y 32
5 , respectively.

Table 5.2: A portion of shared output of IB

DCT
size

Output lines
O0 O1 O2 O3

32-point b0 b15 b7 b8
16-point b0 b7 b4 b3
8-point b0 b3 b1 b2
4-point a0 a1 b0 b1

Chapter 5. A Constant Throughput Architecture for HEVC 128

5.2.2.3 Sharing output adder trees

Although different size of DCT operations are performed, the same adder tree is

used to compute various coefficients. Generally, separate adders and subtractors are

employed in the output adder trees. However, those are replaced by the add-sub

units in the proposed architecture and control signals are generated to perform either

addition or subtraction operation. Due to this, it is possible to share output adder

trees also.

5.2.3 Datapath truncation

Using the separable property, 2D DCT of N ×N matrix can be calculated by row

and column decomposition method. Fig. 5.6 shows the data flow model for HEVC

main profile along with intermediate data depth. This model supports 8-bit pixel

depth and including sign information residual data depth is 9 bits. These 9 bits

are fed as input to the DCT core and finally, 16-bit outputs are produced. It is

clear from Fig. 5.6 that after the first level of transform data depth is log2N + 15

bits. However, only 16 bits of intermediate data are stored in the transpose memory.

This entails log2N −1 least significant bits of the data must be truncated. Next, the

second level of transform is performed on the data stored in the transpose memory.

This operation produces output data whose depth is log2N + 22 and 16-bit outputs

are generated by truncating log2N + 6 number of least significant bits. The issue of

the different size of bit truncation arises because the first- and second- level DCT

input depths are different. Maintaining equal input data depth is a solution to this

problem. Such a modified folded 2D DCT architecture is presented in Fig. 5.7.

Here, input data are shifted left by 7 bits so that 16-bit data depth is achieved and

Chapter 5. A Constant Throughput Architecture for HEVC 129

Figure 5.6: Data flow model for 2D DCT in HEVC main profile

Figure 5.7: Modified folded 2D DCT architecture

then it is fed to the DCT core. Next, log2N + 6 number of least significant bits are

truncated. This method also produces the same coding efficiency.

The amount of bit truncation and the input data depth of adders vary depending

on the DCT size. In the proposed architecture, the bit depth of intermediate data is

pruned so that required amount of bit truncation can be achieved with fixed adder

size. Datapath truncation for 8-point DCT is shown in Fig. 5.8. Here, 17-bit outputs

of IB unit are fed to the MCM as depicted in Fig. 5.8(a). MCMs are designed by

right shift operations instead of left shift. Consequently, input bus depth for entire

adder structure remains the same and 7 least significant bits also get truncated. Fig.

5.8(b) depicts architecture of MCM-0 and MCM-3 using this technique. Further, in

the output adder tree one bit is truncated after each addition, as shown in Fig. 5.8(c).

In this way, total log2N − 1 least significant bits are truncated in the output adder

tree unit and overall log2N − 1 + 7 bit truncation is achieved without compromising

with the expected results.

5.2.4 Transpose Memory (TM)

A 2D DCT architecture requires TM to store intermediate results. A register array

is used as TM in [68] because it is highly flexible. However, it is not suitable for the

Chapter 5. A Constant Throughput Architecture for HEVC 130

Figure 5.8: Datapath truncation example (a) IB (b) MCM-0 and MCM-3 (c)
Output adder tree

large size of memory as it is not power and area efficient [117]. Therefore, a single

port SRAM based TM is used in the proposed architecture.

The proposed architecture requires N clock cycles to calculate 1D DCT and in this

duration, it produces k (i.e. 32
N) matrices of size N ×N . Therefore, a TM with a

bandwidth of 32 samples per clock cycle is required. Here, 32 SRAM banks are used

and each of them either accepts or emits one sample per clock. Further, each bank

contains 32 locations to store intermediate data. A diagonal mapping technique

[117] is used while accessing data from them. According to this mapping technique,

intermediate results are stored in a diagonal direction as shown in Fig. 5.9(a). It is

clear from the figure that element (m,n) of ith matrix is placed in mth address of

Chapter 5. A Constant Throughput Architecture for HEVC 131

Figure 5.9: Transpose memory (a) Data mapping (b) Read and write method
(c) Read address generation

(s mod 32)th SRAM bank where

s = N × (i − 1) +m + n, for 0 ≤m,n ≤ (N − 1) and 1 ≤ i ≤ k. (5.5)

This type of mapping is achieved by shifting data before write as well as after read

operations, as shown in Fig. 5.9(b). The number of shifts during these operations

depends on read and write addresses, respectively.

Chapter 5. A Constant Throughput Architecture for HEVC 132

While reading data 32 SRAM locations are accessed concurrently and one data is

read from each bank. Read address for nth SRAM bank can be generated as follows:

READ ADDR[n] = (BASE ADDR + n) mod N,

for 0 ≤ BASE ADDR ≤ (N − 1). (5.6)

Read address from SRAM[0] is treated as a base address. For the first read operation,

the base address is zero and it is decremented in the subsequent clock cycles. Fig.

5.9(c) shows the circuit diagram for nth read address generation.

5.3 Results and Discussion

5.3.1 Coding Performance

The proposed architecture uses right shift operations to realize MCMs. As a result,

datapath width of the architecture is reduced at the cost of coding performance. To

measure the impact of the datapath pruning, we have compared the performance

of the architecture with that of the reference software for HEVC [12]. For this

performance comparison, HM-16.15 software is used with common test conditions

as described in [103]. Input sequences from five different classes are picked. These

are PeopleOnStreet 2560×1600, ParkScene 1920×1080, BasketballDrillText 832×480,

BasketballPass 416×240 and Johnny 1280×720. PSNR variation is calculated using

the standard BD-rate approach [88] with four different quantization parameters (i.e.,

22, 27, 32 and 37). The performance comparison results are presented in Table 5.3.

Note that the negative PSNR difference represents coding loss compared to that

of the reference software. It is evident from Table 5.3 that the maximum PSNR

Chapter 5. A Constant Throughput Architecture for HEVC 133

Table 5.3: PSNR difference of the proposed architecture to HM-16.15

AI LD RA
Y CB CR Y CB CR Y CB CR

A -0.02 -0.04 -0.03 - - - -0.01 -0.01 -0.01
B -0.03 -0.05 -0.04 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
C -0.02 -0.01 -0.02 -0.05 +0.01 -0.02 -0.08 -0.04 -0.02
D -0.04 -0.05 -0.05 -0.04 -0.08 -0.06 -0.01 -0.03 -0.04
E -0.08 -0.07 -0.08 -0.01 -0.02 -0.03 - - -

variation of the luma component is less than 0.1. Therefore, it suggests that the

proposed method of datapath pruning produces an insignificant impact on the coding

performance of the encoder.

5.3.2 Implementation Results

In this Section, the proposed architecture is implemented on FPGA as well as ASIC

platforms and the implementation results are compared with the existing architec-

tures.

5.3.2.1 FPGA implementation

The proposed 4, 8, 16, and 32 -point 1D DCT architectures are coded in Verilog RTL.

All the source codes are then synthesized using Xilinx Vivado 2016.2 to implement

on Virtex-7 FPGA platform. For comparison purpose, we have also implemented

reference algorithm as proposed in HM software and detailed synthesis report is

presented in Table 5.4. Both the architectures use 16-bit input bus. To constrain the

speed of operation, registers are used at the input as well as output side. Vector less

power estimation is done at 50 MHz clock frequency. Processing time is calculated by

reducing positive time slack from the constrained time and the maximum operating

frequency is obtained. Since static power, IO power and clock power are not directly

C
h
ap

ter
5.

A
C

on
stan

t
T

hrou
ghpu

t
A

rchitectu
re

for
H

E
V

C
134

Table 5.4: Synthesis results for 1D DCT architectures

Architecture Size LUT SLICE
Time
(ns)

Power
(mW)

Throughput
(samples / clk)

Area-Delay
product

Power
reduction

Area-Delay
product reduction

Reference

4 300 84 7.046 3 4 2114 - -
8 1348 388 7.937 18 4∼8 10699 - -
16 4943 1428 9.314 68 4∼16 46039 - -
32 18154 5183 10.589 255 4∼32 192233 - -

Proposed

4 250 76 7.181 3 4 1796 0% 15%
8 963 298 8.015 12 8 7718 33.3% 27.9%
16 3754 1171 9.024 40 16 33876 41.2% 26.4%
32 13680 4165 9.559 126 32 130767 50.6% 32%

Table 5.5: Comparison with other 1D DCT architectures implemented on FPGA platform

LUT/ALUT Reg./FF
Speed
(MHz)

Throughput
(Msps)

FoM Relative FoM

[83] 13517 - 43.6 1395.8 103.3 0.42
[81] 21568 7309 279.4 2200 102 0.42

Proposed 13680 - 104.6 3347.6 244.7 1

Chapter 5. A Constant Throughput Architecture for HEVC 135

related to the complexity of the design; those are excluded during power calculation.

The motivation of the proposed architecture is to maintain constant throughput

irrespective of the TU size along with reduced area overhead. Some architectures

[73, 74] have been already proposed which maintain constant throughput irrespective

of TU size. However, they use approximate DCT for video compression. Therefore,

their coding performance degrades significantly. On the other hand, the proposed

architecture uses integer DCT for video compression and its coding performance is

almost similar to that of the HM software.

It is clear from Table 5.4 that the proposed architecture requires less number of LUTs

as compared to that of the reference architecture. Its processing time requirement

and power consumption are also less. It is because the reference architecture uses

multipliers to calculate DCT. Additionally, intermediate data bus width is large

and finally, 16-bit result is obtained by truncating the output bus. However, only

17-bit intermediate data is used in the proposed architecture and the same result

is obtained by truncating a single bit from the output bus. Further, shift and add

approach is used to implement multiplication. Consequently, area-delay product and

power consumption of the proposed 32-point architecture is 32% and 50.6% lower

than that of the reference architecture, respectively. Moreover, the throughput of the

proposed N-point architecture is constant at N samples per clock. On the contrary,

the throughput of an N-point architecture using reference algorithm reduces during

lower order DCT computation and it varies from 4 to N samples per clock.

The performance of the proposed architecture is compared with the other existing

DCT/IDCT architectures implemented on FPGA platform. These comparison re-

sults are presented in Table 5.5. From this table, it is clear that LUT utilization of

the proposed architecture is almost equal to that of [83]. However, the processing

speed of the proposed architecture is more than 2.5 times that of [83]. Architecture

Chapter 5. A Constant Throughput Architecture for HEVC 136

in [81] operates at very high frequency but, its throughput varies depending on the

type of DCT applied. On the other hand, throughput of the proposed architecture

is constant irrespective of the DCT size and it is much higher in comparison to the

other architectures. To determine the overall efficiency and for a fair comparison,

figure of merit (FoM) is calculated for all the designs as follows:

FoM =
Total samples processed per second

Area × 103
, (5.7)

where the area is proportional to the number of LUTs required for the design.

Relative FoM is calculated by normalizing FoM with respect to the maximum

FoM . It is clear that FoM of the proposed architecture is the best among those

listed in the table.

5.3.2.2 ASIC implementation

The source code of the proposed 1D DCT architecture is also implemented on ASIC

platform using 90 nm standard cell library [104]. These results are also compared

with some of the existing DCT/IDCT architectures and are presented in Table 5.6.

Total area of the proposed architecture is divided by the area of 2-input NAND gate

to estimate the gate count and power consumption is estimated by constraining the

frequency at 100 MHz.

It is observed that the hardware cost of the proposed architecture is 79.2K logic

gates and the maximum operating frequency is 157 MHz. FoM and relative FoM

are calculated using (5.7), where the area has been replaced with gate count for

this purpose. FoM and relative FoM reveal that the performance of the proposed

architecture is better than all but one [80] design listed in the Table 5.6. This is

because design [80] is a pipelined architecture and it is implemented on advanced

C
h
ap

ter
5.

A
C

on
stan

t
T

hrou
ghpu

t
A

rchitectu
re

for
H

E
V

C
137

Table 5.6: Comparison with other 1D DCT architectures implemented on ASIC platform

[68] [80] [84] [76] [71] [85] Proposed

Technology 90 nm 65 nm 130 nm 90 nm 90 nm 90 nm 90 nm
Gate counts 131 K 115.8 K 93 K 63.8 K 163 K 63.8 K 79.2 K

Max. Freq (MHz) 187 476 191 270 250 312 157
Power (mW) 23.17 6.12 - - 35.38 - 15.8
Throughput

(samples / clock)
32 32 4 8 25.7 4 32

FoM 45.64 131.5 8.22 33.85 39.4 19.56 63.4
Relative FoM 0.72 2.07 0.13 0.53 0.62 0.31 1

Table 5.7: Computational complexity of 1D DCT architectures

DCT size 4 8 16 32

Reference
MUL 4 22 86 342
ADD 8 28 100 372

SHIFT 2 4 8 16

Reusable [68]
ADD 14 64 264 1024

SHIFT 10 40 136 464

Proposed
ADD 14 52 200 712

SHIFT 10 42 146 395

Chapter 5. A Constant Throughput Architecture for HEVC 138

technology node. Table 5.6 entails that gate count requirement of the proposed archi-

tecture is higher than that of [76] and [85]. Similarly, the speed of the architectures

[84], [76] and [85] is much higher as compared to that of the proposed architecture.

However, design in [84] and [85] can process only four pixels in a single clock cycle.

Similarly, IDCT architecture in [76] supports all size of transforms used in HEVC,

but its throughput depends on the transform size. Similarly, IDCT architecture in

[76] supports all size of transforms used in HEVC, but its throughput depends on

the transform size. It requires 11 cycles to process one row of a 32-point transform

in the worst case. Therefore, the effective throughput of those architectures is less.

As a consequence, to perform 2D DCT of a TU, they require more number of clock

cycles as compared to the proposed architecture. Hence, none of them is suitable

to process 30 frames of 4:2:0 format 8K UHD video in a second. The design in

[71] also tries to maintain constant throughput irrespective of the DCT size with

the use of lifting algorithm. As a result, its operating frequency is high. However,

its latency is high and it depends on the number of pipeline stages. Therefore, the

effective throughput of the design [71] is less than that of the proposed architecture.

Additionally, it requires extra hardware to reduce the power consumption which

increases area overhead. The reusable architecture [68] and the proposed design are

capable of producing 32 samples per clock and their throughput remains constant

irrespective of the DCT size. However, the area of the design [68] is higher because it

uses an extra CN
2

unit with each N -point DCT module to obtain constant through-

put. On the other hand, the proposed architecture uses hardware sharing method

to maintain constant throughput. Therefore, hardware complexity of the proposed

architecture, in terms of number of adders and shifters, is less as compared to that

of [68]. Table 5.7 presents a comparison of computational complexity with other 1D

DCT architectures. The proposed architecture and reusable architecture [68] avoid

the use of multiplication and MCMs are used for this purpose. However, the number

C
h
ap

ter
5.

A
C

on
stan

t
T

hrou
ghpu

t
A

rchitectu
re

for
H

E
V

C
139

Table 5.8: Comparison of folded 2D DCT architectures implemented on ASIC platform

Architecture N Technology
Area

(Gates)
Memory

(bits)
Speed
(MHz)

Througput
(pel)

Power
(mW)

[54] 8 45 nm 86 K - 806 6.45 G 600
[56] 8 45 nm 74 K - 763 6.1 G 500
[58] 8 45 nm 78 K - 809 6.47 G 550
[62] 8 45 nm 74 K - 849 6.79 G 550
[118] 8 45 nm 74 K - 851 6.8 G 550
[68] 4∼32 90 nm 208 K - 187 2.99 G 40
[70] 4∼32 90 nm 149 K - 150 253 M -
[71] 4∼32 90 nm 243 K - 250 3.21 G 52
[119] 4∼32 90 nm 383 K 16 K 311 9.72 M 35.4

Proposed 4∼32 90 nm 87 K 16 K 146.4 2.3 G 28

Chapter 5. A Constant Throughput Architecture for HEVC 140

of adders required in the proposed architecture is less as compared to the reusable

architecture [68] because hardware sharing method is used.

We have also coded the proposed folded architecture for 2D DCT calculation in

Verilog. It is synthesized using 90 nm standard cell library and the comparison

results with some of the architectures are presented in Table 5.8. The architectures

in [54, 56, 58, 62, 118] are able to compute 8-point DCT and do not support variable

TU size requirement of HEVC. Although throughput of those architectures is very

high, they consume huge power. Architectures in [70, 71, 119] use pipeline design

strategy to improve the throughput. On the contrary, the proposed design uses

resource sharing technique for this purpose. Consequently, significant reduction

in gate count and power consumption is observed. Moreover, throughput of the

proposed architecture is also comparable to the design in [71]. The proposed 2D

DCT architecture uses single port SRAM banks as transpose memory and it takes

(2N +1) cycles to calculate 2D DCT of 32
N blocks of size N ×N . To support 8K UHD

video at 4:2:0 YUV format with 30 frames per second any architecture must be able

to process 1.5 G pixels per second. However, the proposed 2D DCT architecture can

process maximum 2.3 G pixel per second. Therefore, in a second this architecture

can process at most 185 frames and 46 frames of 4K and 8K size UHD video,

respectively.

5.4 Summary

In this chapter throughput of the integer DCT architecture has been increased to

improve the processing time in all quadtree depth. It is observed that lower order

DCTs are used frequently than higher order DCTs during video encoding in HEVC

standard. However, throughput of the transform core reduces during lower order

Chapter 5. A Constant Throughput Architecture for HEVC 141

DCT computation. Therefore, a resource sharing scheme is used in the proposed ar-

chitecture so that multiple numbers of lower order DCTs are computed concurrently.

The proposed 1D DCT architecture can process 32 samples/clock irrespective of the

transform size. Maximum operating frequency of the proposed 1D DCT architec-

ture is 104.6 MHz when implemented on Virtex-7 FPGA and it can process 3347.6

M samples per second. CMOS 90 nm ASIC implementation of the same design

requires 79.2K logic gates and it operates at 157 MHz. The proposed modified 2D

DCT architecture requires 2N + 1 clock cycles to process 32
N blocks of N ×N pixels.

The proposed folded 2D DCT model requires 87K gates and its throughput is 2.3

G pixels per second. The maximum frequency of operation of this architecture is

146.4 MHz and power consumption is 28 mW. Therefore, the proposed 2D DCT

architecture can process at most 185 frames and 46 frames of 4K and 8K ultra high

definition (UHD) video, respectively.

—-

