
Chapter 4

Approximated Transform Core

Architecture for HEVC

This chapter explains the derivation of Walsh–Hadamard Transform (WHT) based

DCT and IDCT matrices for HEVC. Based on that, different approximated models

are proposed to reduce the hardware complexity of an HEVC encoder with very small

compromise in the coding performance. Those approximate models are implemented

on FPGA and ASIC platforms and the complexity of the core transform architecture

for HEVC is assessed.

4.1 Introduction

HEVC can reduce the bit rate by 50% as compared to that of the H.264/AVC

[11] to achieve the same visual quality. To achieve this saving, a large number

of new features such as more number of intra and inter prediction modes, recursive

quadtree partitioning, higher order TU have been introduced in the HEVC. All these
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newly introduced features increase the encoder complexity by about 40 − 70% [71]

as compared to that of H.264/AVC. On the other hand, small area and low power

consumption are the primary design constraints in case of portable hand-held de-

vices as the battery life is limited. Therefore, architectural optimization by suitable

approximation is imperative to reduce the power consumption and computational

complexity for HEVC.

It is observed that RDO process [72] consumes a major portion of the power and

hardware resources. RD cost is calculated after splitting each coding block quadrat-

ically and recursively to obtain optimum block size. So, transform and entropy

coding are recursively performed in each quadtree depth level. It means, optimizing

the RDO process can significantly reduce the power consumption and complexity of

the encoder. Several methods have been proposed at algorithmic level which further

reduces the RDO complexity. Fast mode decision methods for intra- or inter- coding

[105–107] and all zero block detection [108–110] are few of them. These optimiza-

tion techniques depend on the characteristics of predicted signals and employ less

complex WHT [111] to analyze it.

Some works have proposed RDO optimization by approximating forward- and inverse-

DCT. Among them, the most popular approximation is integer transform [67] which

is discussed in Chapter 3. In integer transform, real-valued coefficients are replaced

by integers such that propoerties of DCT are mostly maintained. Integer transform

invokes integer arithmatic only and therefore, reduces the computational complexity.

Such type of integer transform is proposed and adopted in HEVC core transform [66].

Its hardware implementation is presented in [68] and in Chapter 3 which use MCMs

[69] to obviate the need of multipliers. Integer transform is further approximated

in [73, 74, 77, 78] and optimized designs are proposed. However, these approxima-

tion methods use square-wave like transform and hence, their accuracy and coding



Chapter 4. Approximated Transform Core Architecture for HEVC 79

performance degrade significantly. Fixed point approximation of DCT coefficients is

used in [79] and discussed in Chapter 3 which improves hardware cost with minimal

degradation in coding performance.

The HEVC encoder requires WHT to determine the sum of absolute transformed

differences (SATD) in the prediction unit. Architecture proposed in [70] exploits the

relationship between WHT and DCT. Such type of architecture uses pre-computed

WHT results from the prediction unit to calculate DCT. However, it requires a

large number of rotation units which increase the hardware cost and delay. Masera

et al. [71] proposed an approximate method which dynamically skips some rotations

depending on the characteristics of the input signal.

WHT based transform architecture is the most suitable for HEVC as the same

architecture can be used to compute both the transform coefficients and WHT used

in prediction stage. However, it involves a huge number of arithmetic operations

to realize a large set of rotations. Therefore, the performance of the architecture

degrades in terms of area, power and speed. In order to reduce the complexity of the

rotation based architecture, an approximation algorithm for WHT based transform

architectures is proposed in this chapter. The algorithm results in an approximated

architecture to affirm a particular trade-off between coding accuracy and hardware

complexity. Four such approximated architectures are proposed which provide a

significant reduction in hardware complexity with four different coding efficiencies.

Many approximation techniques have already been proposed in [47, 55, 73, 74] which

are very popular for image compression. However, most of them are not devised for

video compression as it demands more accuracy than image. It has been observed

that for the most of the cases the coding performance of the proposed WHT based

approximation schemes is better than that of the earlier reported approximation

methods.
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Table 4.1: Percentage of different size transforms used in different sequences
during RDO

Sequence
class

AI LD RA
4 8 16 32 4 8 16 32 4 8 16 32

A 57.3 35.4 5.6 1.5 - - - - 72.5 21.4 5.3 0.8

B 55.7 36 6.6 1.5 71.7 21.8 5.5 0.8 72.6 21.2 5.1 0.75

C 61 33 4.6 1.3 72 21.7 5.4 0.8 72.6 21.4 5.2 0.78

D 60.9 33 4.9 1.2 74 20.4 4.7 0.7 74.6 20.2 4.6 0.63

E 56.5 35.4 6.4 1.6 71.7 21.6 5.7 0.9 - - - -

Av. 58.3 34.6 5.6 1.4 72.4 21.4 5.3 0.8 73 21 5 0.75

We have presented the WHT based DCT and IDCT architectures in this chapter.

Other contributions of this chapter are as follows:

� Statistical analysis of various UHD video sequences is performed to understand

the usage of different size of transform kernel in HEVC.

� New data flow models of WHT based transform architectures (forward and

inverse) are proposed.

� An algorithm is proposed for approximating transform architectures and the

effect of the proposed approximation algorithm on different size of transform

has been analyzed to demonstrate the trade-off between the coding perfor-

mance and hardware cost.

� An approximate higher order WHT and on its basis high-frequency coefficients

pruning is proposed.

4.2 Transform size statistics in HEVC

Four different sizes (i.e., 4×4, 8×8, 16×16 and 32×32) of DCT and IDCT are used

in the HEVC for forward and inverse transform operations of the residual data. It
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Figure 4.1: RD graph comparison of original DCT with higher order approx-
imated and with only lower order (4 and 8) DCT. (a) & (c) for AI, and (b) &
(d) for RA encoder configuration for Traffic (2560 × 1600) and PeopleOnStreet

(2560 × 1600) sequences, respectively

has been observed that higher order transforms (i.e.,16× 16 and 32× 32) reduces bit

rate up to 10% and this bit rate savings is more apparent for the sequences with

higher resolution [66]. However, an acute increase in complexity is observed with

the use of higher order transforms. Therefore, an efficient approximation of higher

order transform architectures is imperative to reduce the complexity. To study the

effect of approximation on coding performance, we performed different statistical

analysis with HEVC test model HM-16.15 [12]. Different encoder configurations viz.

AI, LD and RA are used with the test conditions and sequences described in [103].
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We studied the percentage of the different size of transform operations performed in

HEVC. These results are presented in Table 4.1. After averaging over different test

sequences of a specific class, it is observed that for any kind of encoder configuration

more than 90% of times lower order transforms are performed, and the higher order

transform operations are performed less than 8% of times. Among different encoder

configurations, almost the same percentage of higher order operations are used in

LD and RA configuration. However, it is more in the case of AI configuration. All

type of sequences use almost same percentage of different size transform operations.

So, we have selected sequences of the highest resolution (i.e., Class A) for rest other

statistical analysis.

It is clear from the previous discussion that the higher order transform operations

increase complexity significantly. However, they are rarely used during video cod-

ing. Therefore, an approximation technique for the transform kernel can be used to

reduce computational complexity. Hence, to study the effect of approximation, we

have replaced higher order DCTs by WHT and observed the YUV PSNR difference

with the two configurations of HM software. The first configuration is the default

configuration which uses all size of DCT. In the second configuration, maximum

transform size was limited to 8 ( i.e., lower order DCT only). These results are

plotted in Fig. 4.1. Note that, the difference in RD plots between HM default and

approximated mode are more pronounced in AI than that of the RA configuration

as it uses more number of higher order DCTs. It is also noticeable that although

WHT is the bold approximation of the DCT, still approximated mode manages to

achieve better coding performance over lower order DCT. Therefore, a little accuracy

increment can produce reasonable trade-off between coding efficiency and hardware

complexity. The approximation can be further extended by discarding higher fre-

quency components of larger size DCTs. As the higher order DCTs are applied
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only in the homogeneous regions, most of the energy can be preserved by calculat-

ing only few low-frequency components. Therefore, these statistics prove that the

higher order DCTs can tolerate some approximations with a negligible coding loss

to reduce the computational complexity. The same is true for IDCT also. So, in

this chapter, we have proposed a signal flow diagram of 32-point DCT as well as

IDCT and their different approximated architectures to sustain a balance between

performance accuracy and hardware complexity.

4.3 Approximated architectures

In this Section, we have proposed generalized models for N th order WHT based DCT

and IDCT. An algorithm is presented to approximate the WHT based DCT as well

as IDCT architectures, and the effect of the approximation algorithm on different

size of transforms are measured.

4.3.1 Proposed DCT architectures

The advantage of WHT based DCT architecture is two folds. Firstly, it can use

precomputed WHT coefficients from the prediction stage to compute DCT. Secondly,

WHT based DCT architecture requires less hardware resources as compared to the

other designs [112]. Designs in [71] and [70] are also WHT based DCT architectures

for HEVC. However, a new approach of WHT based DCT for HEVC is proposed in

this chapter which obviates the need of hardware blocks for bit reversal, gray coding

and lifting scheme discussed in [70, 71]. Consequently, hardware cost and power

consumption of the proposed architecture is less as compared to [71] and [70].
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As suggested in [112], any N-point DCT matrix DN can be written in terms of

orthonormal WHT matrix ŴN as

DN =DN .ŴN

T
.ŴN = TN .ŴN =

1
√
N
.TN .WN , (4.1)

where

WN =
√
N.ŴN (4.2)

and

TN =DN .ŴN

T
. (4.3)

The matrix WN can be obtained by re-ordering the basis vectors of Hadamard

matrix as shown in [111].

TN is a orthonormal matrix which can be recursively decomposed to lower order

matrices and finally, we obtain T2 as an identity matrix of size 2 × 2. Therefore,

(4.1) can be written as
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Here, IN
2

and JN
2

are identity and cross-identity matrices of size N
2 ×

N
2 , respectively.

An example of cross-identity matrix of order four is shown in (4.5).
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PN is a permutation matrix of size N ×N . For example, permutation matrix P8

can be written as
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Further, UN
2

is a matrix of size N
2 ×

N
2 and used to generate the odd DCT coefficients.

This matrix can be further decomposed as
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U1=1 and VN
2

is a rotational matrix of size N
2 ×
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2 which can be written as
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where θ = π
2N and k = N

2 − 1.
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In HEVC, real-valued elements of DN are rounded to the nearest integer after mul-

tiplication with a constant value. Therefore, integer DCT CN can be written as

CN = ⌊const ×DN ⌉, (4.9)

where ⌊∗⌉ represents rounding operation. In HEVC, const = 26+m
2 , where m = log2N .

The basis vectors of the integer DCT remain almost orthogonal and maintain almost

equal norm. In this way, drifting error and the requirement of the floating point

multiplier is eliminated.

From (4.1), (4.4) and (4.9), HEVC compliance DCT matrix CN can be expressed

as
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It can be observed from (4.10) that 1D DCT of a vector x = [x0, x1,⋯, xN−1]T can

be computed as
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Figure 4.2: An N-point 1D DCT architecture
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and

an = xn + xN−n−1

bn = xn − xN−n−1.
(4.14)

The vector y = {y0, y1, . . . , yN−1} represents output of the DCT operation. The

generalized architecture for N-point 1D DCT is shown in Fig. 4.2. An IB unit is

required to compute all an and bn signals. Multiplexers are placed in the input side

so that the same architecture can compute N
2 -point 1D DCT also. Only CN

2
module

is used during N
2 -point DCT computation and the rest of the architecture remains

idle. Thus, a 32-point DCT core (C32) consists of C16, C8, C4 modules and hence,

one can compute 4, 8, 16, 32 -point DCT depending on the select lines ‘SEL N’. A

decoder can be used to generate these select lines.
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4.3.2 Proposed Approximation

The architecture proposed in Fig. 4.2 demands a large number of cascaded rotational

units to compute the odd DCT coefficients. The most efficient technique to realize a

rotation unit is by lifting method [51] which decompose each rotation into three steps

to reduce the computational complexity. However, three multipliers and three adders

are still needed to realize a single rotational unit. Therefore, the physical realization

of this architecture requires large hardware resources and computational time is also

high. To avoid the use of multipliers and to reduce the hardware resources, each

rotational unit is approximated such that orthogonality and normality errors are

minimized. To attain this, we have approximated each cosine as well as sine terms

in VN
2

as below.

cos(p.θ) = 2−ap , for p = 1,3,5,⋯, k;

sin(p.θ) = 2−bp , for p = 1,3,5,⋯, k;

(4.15)

where ap and bp are the integers. For 32-point DCT the magnitude of cos(p.θ)

and sin(p.θ) varies from 1 to π
64 . Hence, magnitude of ap and bp varies from 0 to

5. Algorithm 1 is used to approximate cos(p.θ) and sin(p.θ) for every value of p.

It selects the best values of ap and bp depending on the minimum error (i.e., ferr)

in either orthogonality or normality. Orthogonality and normality errors can be

calculated as

Orthogonality err = ∣DN .DN
T
− diag(diag(DN .DN

T
))∣

Orthonormality err = ∣IN − diag(diag(DN .DN
T
))∣,

(4.16)

where IN is the identity matrix of size N ×N . It has been observed that both the

approximated matrices based on orthogonality and normality error are orthogonal.

However, normality error is less for the later one. Therefore, the function ferr is

selected to calculate the normality error in the approximated matrix. It has been
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Algorithm 1 Approximation of cosine and sine terms

1: procedure Approximation( VN
2

)

2: for p = 1 ∶ 2 ∶ k do
3: Enow ← inf ;
4: for ap(or bp) = 0 ∶ 5 do
5: Eprev ← Enow; VN

2
new ← VN

2
;

6: Obtain VN
2
new by replacing cos(p.θ) by 2−ap

7: (or sin(p.θ) by 2−bp);
8: Obtain DN from VN

2
new;

9: Enow ← ferr(DN);
10: if Enow < Eprev then
11: VN

2
← VN

2
new

observed that the proposed algorithm produces a matrix similar to DCT which is

completely orthogonal.

To investigate the impact of the proposed approximation, we have studied the coding

performance for the following four cases using HM-16.0 [12] software with common

test conditions as described in [103].

1. The proposed approximation method was applied to all size DCT (CASE-I).

2. The proposed approximation method was applied to all size DCT except order

4 (CASE-II).

3. The proposed approximation method was applied to all size DCT except order

4 and 8 (CASE-III).

4. The proposed approximation method was applied on DCT of order 32 only,

but not on 4, 8 and 16. (CASE-IV).
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Table 4.2: PSNR loss due to the proposed approximation on different DCT size
with (1) AI (2) LD (3) RA configurations

Class Sequences C-I C-II C-III C-IV

A
Traffic 0.272 0.149 0.063 0.031

PeopleOnStreet 0.283 0.156 0.060 0.030

B
CrowdRun 0.235 0.151 0.062 0.025
ParkScene 0.223 0.134 0.064 0.026

E
KristenAndSara 0.245 0.148 0.072 0.034

FourPeople 0.205 0.115 0.055 0.023

(1)

Class Sequences C-I C-II C-III C-IV

B
CrowdRun 0.139 0.068 0.018 0.005
ParkScene 0.087 0.048 0.014 0.007

E
KristenAndSara 0.215 0.130 0.032 0.003

FourPeople 0.196 0.116 0.042 0.005

(2)

Class Sequences C-I C-II C-III C-IV

A
Traffic 0.131 0.072 0.038 0.014

PeopleOnStreet 0.1336 0.068 0.020 0.010

B
CrowdRun 0.125 0.064 0.021 0.008
ParkScene 0.026 0.062 0.026 0.009

(3)

Table 4.3: Number of rotations performed in 1D DCT

Block Size C-I C-II C-III C-IV Reference

4x4 0 4 4 4 4
8x8 0 8 40 40 40

16x16 0 16 80 272 272
32x32 0 32 160 544 1568

For all those cases YUV-PSNR variations are calculated with respect to HEVC ref-

erence software using the standard BD-rate approach [88] with four different quanti-

zation parameters (i.e., 22, 27, 32 and 37). The YUV-PSNR variations are furnished

in Table 4.2 for AI, LD and RA encoder configurations.

The proposed approximation algorithm replaces the rotation unit by a butterfly

structure. Therefore, rotations are inessential with the proposed approach. The
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Figure 4.3: Architecture of (a) 4-point DCT (b) Multiplier Unit (MU)

details of the number of rotations saved for each case are furnished in Table 4.3.

It can be observed that for large size DCT, θ is very small. Therefore, the terms

cos(φ) and sin(φ) (i.e.,φ = p.θ) which produce low frequency DCT coefficients can

be approximated as cos(φ) ≈ 1 and sin(φ) ≈ φ. These large size DCTs are applied

in homogeneous regions where the most of the energy is concentrated in few low-

frequency components. Therefore, the impact of the proposed approximation in

the large size DCT is less. Consequently, the CASE-IV produces the best coding

performances as reflected in Table 4.2. Note that, in CASE-IV, the performance

degradation is insignificant even after the 32-point DCT has been approximated

by the algorithm 1. On the other hand, least number of rotations are performed in

CASE-I thereby limiting the required hardware resources to the minimum. However,

CASE-II and CASE-III also produces negligible performance loss with respect to the

standard integer DCT in HEVC reference software and produces a good trade-off

between the coding performance and hardware resource requirement.
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4.3.3 Hardware implementation of DCT architectures

Although we have implemented all four architectures, hardware design approach for

only CASE-II is discussed in this section. As DCT and IDCT have almost similar

structures, The hardware architecture for CASE-I is elaborated in IDCT designing

part of this chapter. The same design approach can be extended to other cases as

well.

4.3.3.1 4-point integer DCT

From (4.11), (4.12) and (4.14) the integer DCT kernel for 4-point DCT can be

written as
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=C2.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a0

a1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

64 64

64 −64

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a0

a1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y41

y43

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Û2.W2.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b0

b1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.17)

where,

W2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1

1 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.18)

and

a0 = x0 + x3; a1 = x1 + x2;

b0 = x0 − x3; b1 = x1 − x2;

(4.19)

From Section 4.2, it can be observed that 4-point DCT is frequently used and its

complexity is the minimum. Therefore, in CASE-II proposed approximation method

is not applied for 4-point DCT. A schematic diagram of 4-point integer DCT is shown
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Figure 4.4: Architecture of (a) 8-point DCT (b) 4-point WHT (W4) using two
2-point WHT ( W2)

in Fig. 4.3(a). Here, multiplications are performed by Multiplier Unit (MU) and

each MU can perform two multiplications simultaneously. Shift and add operations

are used to realize these MUs. We used Hcub algorithm with minimum adder tree

depth to optimize shift-add structure for all the MUs. We observed that adder

tree depth in all the MUs can be bounded to one with a slight hand tuning of few
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coefficients. Hence, Û2 is selected as

Û2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

60 24

−24 60

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.20)

Schematic model of a MU is shown in Fig. 4.3(b).

4.3.3.2 8-point integer DCT

Following the similar approach 8-point DCT coefficients of a vector x = [x0, x1,⋯, x7]

can be calculated as

[y80 y82 y84 y86]
T

=C4. [a0 a1 a2 a3]
T

[y81 y83 y85 y87]
T

= Û4.W4. [b0 b1 b2 b3]
T

.

(4.21)

The respective values of an and bn, for N = 8, can be calculated from (4.14). W4 is

WHT matrix of order 4 and can be represented as

W4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.22)

According to (4.13) Û4 can be computed in terms of Û2 as follows:

Û4 = V4.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Û2 0

0 Û2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.23)
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where Û2 is as shown in (4.20) and V4 can be written as

V4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos( π16) 0 0 sin( π16)

0 cos(3π
16 ) sin(3π

16 ) 0

0 sin(3π
16 ) − cos(3π

16 ) 0

sin(3π
16 ) 0 0 − cos( π16)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.24)

The procedure ‘Approximation’ is called with original V4 as its argument to find

approximated V4 as discussed in Section 4.3.2. As there are two different angles

(i.e., π16 and 3π
16 ) in (4.24), two iterations of ‘for’ loop in Algorithm 1 are required.

Approximated value of sine or cosine term of an angle is evaluated in a single iteration

of the loop. For example, sin( π16) can be approximated by the near about dyadic

number 1
4 or 1

8 . However, in the first iteration the proposed procedure checks all

the dyadic values from 1 to 1
32 and select the best one which produces minimum

orthonormality error. Hence, the approximated V4 becomes

V4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1
8

0 1 1
2 0

0 −1
2 1 0

−1
8 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.25)

Here, all the elements of the matrix V4 can be realized by shift operations and

hence, need of the multipliers and rotation units is eliminated. An 8-point DCT

architecture is shown in Fig. 4.4(a). Multiplexers at the input side are not shown

in this figure to avoid clutter. The proposed 8-point DCT architecture requires a

4-point WHT module. Any N -point WHT can be calculated as follows:
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WN =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

WN
2

0

0 W̄N
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 ⋯ 0 0

⋮ ⋮ ⋮ ⋯ ⋮ ⋮

0 0 0 ⋯ 1 1

1 −1 0 ⋯ 0 0

⋮ ⋮ ⋮ ⋯ ⋮ ⋮

0 0 0 ⋯ 1 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.26)

Here, W̄N
2

is obtained by flipping WN
2

vertically. Therefore, 4-point WHT can be

configured using two 2-point WHT as shown in Fig. 4.4(b).

To investigate the degree of approximation, we have calculated the equivalent 8-point

DCT matrix C8 using (4.10) and is presented in (4.27).

C8 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

64 64 64 64 64 64 64 64
88.5 79.5 46.5 25.5 −25.5 −46.5 −79.5 −88.5
84 36 −36 −84 −84 −36 36 84
78 −6 −102 −66 66 102 6 −78
64 −64 −64 64 64 −64 −64 64
66 −102 6 78 −78 −6 102 −66
36 −84 84 −36 −36 84 −84 36

25.5 −46.5 79.5 −88.5 88.5 −79.5 46.5 −25.5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.27)

This matrix, C8, is HEVC compliance as it is almost equivalent to the integer DCT

matrix used in HEVC.

4.3.3.3 Higher order DCTs

Like 4- and 8- point DCT, architectures for 16- and 32- point DCT can also be

designed by adopting the same procedure. A 16-point DCT architecture is shown

in Fig. 4.5(a). However, from the statistical analysis presented in Section 4.2, it is
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clear that retaining few low-frequency coefficients of higher order DCTs maintains

good trade-off between accuracy and complexity. Therefore, hardware for higher

coefficients of 32-point DCT is pruned. Hardware pruning is achieved by spatial

correlation property of a homogeneous residual block. Usually a 32-point DCT is

used for homogeneous block where intensity of a sample xi ≈ xi+1. Therefore, samples

Figure 4.5: Architecture of (a) 16-point and (b) 32-point DCT
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of a homogeneous block hold the following relations.

(xi + x31−i) ≈ (xi+1 + x30−i)

(xi − x31−i) ≈ (xi+1 − x30−i)
(4.28)

Hence, for 32-point DCT (4.26) can be written as

W16 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

W8 0

0 W̄8

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 0 0 ⋯ 0 0

⋮ ⋮ ⋮ ⋯ ⋮ ⋮

0 0 0 ⋯ 0 2

0 0 0 ⋯ 0 0

⋮ ⋮ ⋮ ⋯ ⋮ ⋮

0 0 0 ⋯ 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.29)

This expression provides 16 lower frequency coefficients of 32-point WHT whereas,

remaining 16 high-frequency coefficients become zero. Hence, an optimized 32-point

DCT module requires a 16-point DCT unit (C16), an 8-point WHT unit (W8) and

a Û8 unit as shown in Fig. 4.5(b).

4.3.4 Proposed IDCT architecture

Variable and large size transform has increased the coding efficiency, but at the cost

of huge computational complexity. Therefore, optimized hardware implementation

is a new research domain especially for the small hand-held and battery operated

devices. Decoder optimization is of high priority for small handheld devices as

they need to support HEVC decoding rather than encoding feature. Hence, IDCT

optimization is very essential for such platforms where little compromise in accuracy

is permitted. Resource sharing and approximation methods are tried and exploited
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for the same reason in recent years. It may be feasible to share hardware resources

among prediction unit, DCT and IDCT blocks in HEVC with WHT based matrix

decomposition method.

Like DCT, the IDCT matrix can be decomposed as

DT
N
= 2−

m
2 .

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

IN
2

IN
2

JN
2

−JN
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

WN
2

0

0 WN
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

T T
N
2

0

0 UT
N
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

PN . (4.30)

Similarly, the HEVC compliance IDCT matrix CT
N

can be expressed as

CT
N
= ⌊26+m

2 .DN ⌉ =WN .⌊2
6.TN ⌉T

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

IN
2

IN
2

JN
2

−JN
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

WN
2

0

0 WN
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⌊26.TN
2
⌉T 0

0 ⌊26.UN
2
⌉T

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.PN

=

⎡
⎢
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⎢
⎣
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2
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2

JN
2

−JN
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣
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N
2

0
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2
.⌊26.UN

2
⌉T

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.PN .

, (4.31)

where

UT
N
2

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

UT
N
4

0

0 UT
N
4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.V T
N
2

. (4.32)

The signal flow graph of N -point 1D-IDCT is shown in Fig. 4.6. The approximate

algorithm discussed in Section 4.3.2 can also be applied for IDCT architecture also

to curtail the use of rotation units. Therefore, hardware cost and processing time

can be reduced.
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Figure 4.6: Signal Flow Graph of 1D IDCT (CT
N ) of order N

4.3.5 Hardware implementation of IDCT architectures

The hardware implementation of 4 and 8 -point IDCT architectures for only CASE-I

have been discussed in the following subsections.

4.3.5.1 4-point IDCT

From (4.31) the 4-point IDCT can be written as

CT
4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I2 I2

J2 −J2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

CT
2

0

0 W2.Û2

T

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.P4, (4.33)

where

CT
2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

64 64

64 −64

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.34)

and

Û2

T
= ⌊26.U2⌉

T =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

26.U1
T 0

0 26.U1
T

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.V T
2 . (4.35)
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Figure 4.7: Architecture of 4-point IDCT (CT
4 )

The proposed approximation algorithm produces V2 as below.

V2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −1
4

1
4 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.36)

Data flow model of 4-point IDCT is shown in Fig. 4.7.

4.3.5.2 8-point IDCT

Following the similar approach 8-point IDCT can be calculated as

CT
8 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I4 I4

J4 −J4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

CT
4

0

0 W4.Û4

T

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.P8, (4.37)

where

Û4

T
= ⌊26.U4⌉

T =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Û2

T
0

0 Û2

T

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.V T
4 . (4.38)

Here, W4 is WHT matrix of order 4 and V4 is obtained from (4.25) by the proposed

approximation algorithm as discussed in Section 4.3.2 to avoid the use of rotational
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Figure 4.8: Architecture of 8-point IDCT (CT
8 )

units. As discussed before, all the elements of the matrix V4 can be realized by right

shift operations. Therefore, the need of the multipliers is eliminated. An 8-point

IDCT architecture is shown in Fig. 4.8. The proposed design approach can be

extended to higher order IDCT modules too.

4.4 Results and Discussion

Approximation reduces the hardware complexity at the cost of reduced coding effi-

ciency. In this section, the coding efficiency as well as hardware efficiency of different

approximation techniques are compared. The proposed method is also compared

with other existing designs and results are discussed in this section.
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Table 4.4: Accuracy comparison of 32-point DCT

MSE (×10−2) Coding Gain Efficiency (%)
DCT 0 9.77 81.7

HM [12] 0.0016 9.77 81.4
JAM [73] 9.95 10.41 59.5

Scalable [74] 10.78 10.1 59.7
Proposed Methods

CASE-I 4.06 8.95 63.8
CASE-II 1.79 9.44 72.0
CASE-III 1.39 9.44 76.4
CASE-IV 0.92 9.06 79.1

4.4.1 Coding efficiency

The proposed approximation technique produces new DCT and IDCT matrices. In

order to evaluate the accuracy of the proposed approximated matrices, we com-

puted the transform related measures like mean square error (MSE), coding gain

and efficiency as defined in [20]. As the IDCT matrix produced is transpose of DCT

matrix, we performed the computation for DCT matrix only. These parameters are

compared with that of the original DCT matrix and the integer DCT used in the

reference software. We have also computed those parameters for other two approxi-

mated architectures, i.e., architecture proposed by Jridi, Alfalou, Meher (JAM) [73]

and the scalable architecture [74]. These results are presented in Table 4.4. To the

best of our knowledge, these architectures are also designed to cater the require-

ments of HEVC. However, they use square wave approximations of different size

DCT matrices. Therefore, MSE is very high and at the same time, efficiency is very

low as compared to that of the proposed method. It can be observed from Table 4.4

that although the accuracy of integer DCT in [12] is higher, the proximity measures

of the proposed matrices are comparable. The MSE is the lowest for Case-IV and

the highest for Case-I, as expected. However, the MSE and efficiency measures of

the matrix in Case-I is better than that of the JAM [73] and scalable [74] matrices.
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4.4.2 Image coding performance

To further evaluate the energy compaction ability, image compression performance

of the proposed approximation methods is measured. Like JPEG, block-based 2-D

transform is applied on standard grayscale images (Miscellaneous) of bit depth 8

and size 512 × 512 obtained from public image bank [113]. The performance was

also measured with the block size of 16 × 16 and 32 × 32. Thereafter, for each block

only initial r-coefficients are retained to reconstruct the images according to zigzag

sequence. For the block size of 8×8, we have chosen the minimum and the maximum

value of r as rmin = 1 and rmax = 32, respectively. These values are 4 times and 16

times higher for the block size of 16 × 16 and 32 × 32, respectively. Average PSNR

vs. retained coefficients curves for different block sizes are shown in Fig. 4.9.

The same experiment is performed on some of the existing methods and their plots

are also presented in Fig. 4.9. As the coefficients of DCT and IDCT are same, the

experiments with DCT matrix are performed. A conclusion regarding performance

of the proposed IDCT matrix can also be drawn from the same set of experiments.

Hence, for all the cases inverse transform is calculated by original IDCT with re-

quired normalization adjustment. This will include the error due to encoder-decoder

coefficient mismatch in the coding performance. Note that, approximated 8-point

DCT matrices for Case-III and Case-IV are the same and therefore, have similar im-

age coding performance with block size of 8× 8. Hence, the performance of Case-IV

is not plotted for the block size of 8 × 8 in Fig. 4.9(a). It is clear from the figure

that for the smaller size block, image coding performance of the proposed approxi-

mation scheme is almost similar to that of the performance of the integer DCT in

HM reference software [12] and it is better than all other existing approximation

schemes. On the other hand, for large block size, the approximated methods fol-

low the performance of the integer DCT for small number of retained coefficients.
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Figure 4.9: PSNR vs Retained coefficients curves for block size of (a) 8 × 8 (b)
16 × 16 and (c) 32 × 32



Chapter 4. Approximated Transform Core Architecture for HEVC 106

As discussed in the previous section, larger size DCTs are applied on homogeneous

regions where maximum energy is concentrated in few low-frequency components.

Hence, preserving few coefficients is more than sufficient to compress large size block.

4.4.3 Video coding performance

The video coding performance of different DCT architectures is discussed in Section

4.3.2. In this section video coding performance of IDCT architecture for CASE-I is

discussed and performance of the remaining cases can be predicted.

The proposed integer IDCT model is integrated in the HEVC reference software [12]

and the impact of the proposed approximation is measured. Thereafter, the coding

performance is compared with that of the integer IDCT matrix available in the

reference software. All the experiments are performed using HM-16.15 with common

test conditions as described in [103]. Input sequences from five different classes

are used. These are Traffic 2560 × 1600, PeopleOnStreet 2560 × 1600, CrowdRun

1920 × 1080, ParkScene 1920 × 1080, BasketballDrillText 832 × 480, BQMall 832 ×

480, BasketballPass 416 × 240, RaceHorses 416 × 240, KristenAndSara 1280 × 720

and FourPeople 1280 × 720. The standard BD-rate approach is followed [88] to

calculate PSNR variations with four different quantization parameters (i.e., 22, 27,

32 and 37). The comparison results in terms of combined PSNR (i.e., YUV-PSNR)

variation for AI, LD and RA encoder configurations are presented in Table 4.5.

Note that the negative PSNR difference represents coding loss compared to that of

the reference software. Table 4.5 shows that the maximum PSNR variation due to

this approximation method is less than 0.5 dB. It can be observed that the proposed

approximation method works better for rotation unit having small angle of rotations
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Table 4.5: PSNR variation with respect to the reference algorithm

Class Sequences AI LD RA

A (WQXGA))
Traffic -0.350 - -0.175
PeopleOnStreet -0.354 - -0.192

B (1080P)
CrowdRun -0.250 -0.133 -0.122
ParkScene -0.261 -0.099 -0.126

C (WVGA)
BasketballDrill -0.179 -0.081 -0.306
BQMall -0.481 -0.423 -0.445

D (240i)
BasketballPass -0.221 -0.130 -0.124
Racehorses -0.390 -0.339 -0.466

E (720p)
KristenAndSara -0.304 -0.227 -
FourPeople -0.269 -0.205 -

and therefore, for the large size of IDCT. Hence, a little increase in the accuracy of

the lower order rotation matrices can significantly improve coding performance.

4.4.4 Implementation results

4.4.4.1 ASIC implementation

Verilog RTL coding is done for all the approximate DCT architectures as well as

the 32-point generalized architecture without any approximation as discussed in

Section 4.3. Thereafter, the source codes for all the architectures are synthesized

by Synopsys Design Compiler using 90 nm standard cell library [104] to compute

the gain in hardware implementation. Detailed synthesis report of these designs

and complexity comparison is presented in Table 4.6. Here, gate count has been

estimated by normalizing total area with respect to the area of 2-input NAND gate.

During row transform, 16 bits input bus width is suggested in [66]. So, all the

proposed architectures are implemented with 16 bits input size. For all the cases,

registers are inserted at the input as well as at the output stages to constrain the

clock period at 4 ns. However, power has been calculated at the fixed clock frequency

of 100 MHz.
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The proposed approximation method reduces the hardware complexity and it results

in power and area reduction. Case-I of the proposed architecture consumes 82%

less power, whereas Case-IV consumes 43% less power. In VLSI design area-delay

product is an important aspect to compare different architectures. The area-delay

product is calculated by multiplying number of gates with processing time. It is

observed from Table 4.6 that area-delay product for all the proposed approximated

DCT architectures is at least 43% less than that of the architecture without any

approximation. It is worth noting that architectures for Case -II and -III maintain

good trade-off between coding performance and hardware cost.

We have further compared the implementation results as well as PSNR variation

with some of the lifting based [70] [71], MCM based [68] [80], truncation scheme [77]

and real-valued[79] DCT architectures. Those designs are intended for HEVC core

transform and support 4-, 8-, 16-, 32- order transforms. However, few of them are

approximated architectures intended to reduce hardware complexity and power con-

sumption. The PSNR variation for the same sequence (i.e., Traffic) was picked in AI

encoder configuration for fair comparison. These comparison results are presented

in Table 4.7. Note that, the proposed architectures in Case-III and Case-IV signifi-

cantly reduce the gate count as well as power consumption with negligible sacrifice

in accuracy. PSNR variation of the Case-II is also comparable to that of [71]. But,

the gate count is approximately one-third as compared to that of the MCM based,

truncation scheme and lifting based approach. The architecture in [79] uses a new

set of real-valued coefficients to reduce intermediate data depth as well as overall

gate count of the DCT core. But, it does not use any approximation technique to

minimize complexity.



C
h
ap

ter
4.

A
pproxim

ated
T

ran
sform

C
ore

A
rchitectu

re
for

H
E

V
C

109

Table 4.6: Complexity comparison of different approximated 1D DCT architectures

Architectures
Area

(Gate)
Time
(ns)

Power
(mW)

Area-Delay
product (×10−4)

Area-Delay
product reduction

Power
Reduction

Without approximation (Original) 111.23 K 4 16.83 4.45 - -

Approximated

Case-I 20.22 K 4 4.00 0.81 82% 76%
Case-II 37.85 K 4 5.64 1.51 66% 66%
Case-III 51.41 K 4 6.87 2.06 54% 59%
Case-IV 63.40K 4 7.83 2.54 43% 53%

Table 4.7: Comparison of 1D DCT architectures implemented on CMOS technology

Tech.
Area

(Gates)
Freq.

(MHz)
Throughput

(Gsps)
Power
(mW)

PSNR var.
(dB)

Architecture
type

Lifting based
[71]∗ 90 nm 163 K 250 3.212 15.5 0.1 Approximated
[70] 90 nm 144 K 150 0.56 - - Without Approx.

MCM based
[68]$ 90 nm 131 K 187 2.992 23 - Without Approx.
[80]� 65 nm 115.8 K 476 8.01 6 - Without Approx.

Truncation scheme [77] 90 nm 102 K 187 - 12.33 0.005 Approximated
Real-Valued [79] 90 nm 88.6 K 256.4 4.1 16.2 0.003 Without Approx.

Proposed

Original

90 nm

111.2 K

250 4

16.83 - Without Approx.
Case-I 20.2 K 4 0.27 Approximated
Case-II 37.9 K 5.64 0.15 Approximated
Case-III 51.4 K 6.87 0.06 Approximated
Case-IV 63.4 K 7.83 0.03 Approximated

∗Unfolded Architecture, $Pruned Architecture, �1-ASU Architecture
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In this chapter, we have proposed a new approximation technique using which hard-

ware complexity of the DCT core reduces significantly. Hence, the gate count of

each of the proposed approximated architectures is smaller as compared to that

of the real-valued DCT architecture [79]. Further, operating frequency of the pro-

posed architectures is comparable to all the architectures implemented using 90 nm

technology. Performance of [80] is higher as it is a pipelined architecture and uses

register after each addition operation. Additionally, it has been implemented on ad-

vanced technology node. This comparison results prove that the proposed method

of approximation produces better result than that of the other existing approxi-

mation techniques and most of the other architectures implemented without any

approximation, as listed in Table 4.7.

We have computed the complexity of the proposed approximated architectures to

measure the effect of the approximation technique. Only adders and shifters are

used to design all the proposed architectures. But, wire shifting, which does not

require any logic resources, is used in these designs. Therefore, the complexity of all

the approximated architectures has been computed in terms of number of adders.

Module-wise summary of the adders required in all the architectures is presented

in Table 4.8. This table shows that the requirement of the adders increases from

Case-I to Case-IV, as expected. It is so because the approximation has been applied

for all size of DCTs in Case-I, whereas only 32-point DCT has been approximated

in Case IV. The complexity comparison of the proposed approximated architectures

with that of the MCM based, lifting based and real-valued architectures is presented

in Table 4.9. The multiplexers count in each case is also mentioned in this table.

As the number of inputs for a particular size of DCT remains the same, the multi-

plexer count is the same for all the cases. The proposed method of approximation

significantly reduces the hardware complexity of the DCT core which is evident from
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Table 4.8: Adders count in proposed approximated architectures

Modules
Case-I Case-II Case-III Case-IV

N=4 N=8 N=16 N=32 N=4 N=8 N=16 N=32 N=4 N=8 N=16 N=32 N=4 N=8 N=16 N=32

IB 4 8 16 24 4 8 16 24 4 8 16 24 4 8 16 24
CN

2
2 10 34 98 2 14 46 126 2 14 54 150 2 14 54 166

WN
2

2 8 24 24 2 8 24 24 2 8 24 24 2 8 24 24

ÛN
2

2 8 24 24 6 16 40 40 6 24 56 56 6 24 72 72

Total 10 34 98 170 14 46 126 214 14 54 150 254 14 54 166 286

Table 4.9: Complexity of 1D DCT in different design methodologies

N
MCM based

[68]
Lifting based

[70]
Real-valued

[79]
Proposed

Case-I Case-II Case-III Case-IV
A SH M A SH A SH A MUX A MUX A MUX A MUX

4 14 10 3 11 0 14 10 10 0 14 0 14 0 14 0
8 50 30 15 39 0 54 38 34 68 46 68 54 68 54 68
16 186 86 49 115 2 182 126 98 208 126 208 150 208 166 208
32 682 278 139 307 8 614 334 170 492 214 492 254 492 286 492

M=No. of multipliers; A=No. of adders/subtractor; SH=No. of shifters; MUX= No. of multiplexers
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Table 4.10: Synthesis results and complexity comparison for 1D DCT architectures implemented on FPGA

Architecture Size LUT SLICE
Time
(ns)

Power
(mW)

Area-Delay
product

Area-Delay
product reduction

Power
reduction

Mul Add Shift

Reference

4 300 84 5.724 10 1717.2 - - 4 8 2
8 1341 400 6.801 50 9120.1 - - 22 28 4
16 4944 1448 6.84 180 41232.9 - - 86 100 8
32 18341 5240 9.808 711 179888.5 - - 342 372 16

Proposed

4 258 80 4.388 8 1132 34% 20% - 14 10
8 900 266 5.996 33 5396.4 41% 34% - 46 22
16 2594 748 7.926 107 20560 50% 41% - 126 54
32 4507 1301 9.3 210 41915.1 77% 70% - 214 96

Table 4.11: Comparison with other DCT architectures implemented on FPGA platform

[73] [74] [78] [81] [82] Prop.
DCT size 32 32 32 8 32 32

i/p bit-lenght 8 8 8 8 9 8
Tech. (nm) 45 45 45 28 28 28

LUT 1656 1760 1776 21568 5600 2752
DSP Block - - - - 128 0

Reg/FF 664 - - 7309 - 0
Speed
(MHz)

136 422 422 279 177 125

Through.
(per clock)

32 32 32 8 4 32

PSNR var. 0.61 0.34 0.22 - - 0.15
Transform 1D 1D 1D 1D 2D 1D
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Table 4.9.

All the proposed architectures can process a maximum of 32 samples per clock at 250

MHz operating frequency. Therefore, using the proposed architecture, any folded

DCT model can calculate 2D DCT of 4 Giga samples per second (Gsps). Hence,

for the best case, it can process 321 fps and 80 fps of 4K (3840 × 2160) and 8K

(7680 × 4320) UHD video, respectively in 4:2:0 YUV format.

4.4.4.2 FPGA Implementation

In order to compare the proposed hardware architecture with the integer DCT ma-

trix of the HEVC reference software [12], the source code of 4, 8, 16 and 32 -point

approximate DCT architectures (Case-II) are synthesized using Xilinx Vivado 2016.2

tool and are implemented on Virtex-7 FPGA. We have also implemented the integer

DCT architecture published in HEVC reference software [12] on the same platform.

Detailed synthesis report of these two designs and their complexity comparison in

terms of number of multipliers, adders/subtractors and shifters is presented in Ta-

ble 4.10. For all the cases, here too, the input bus width is of 16 bits. Registers

are inserted at the input as well as at the output stage to measure the maximum

frequency of operation. Vector less power calculation is done at the fixed clock fre-

quency of 50 MHz. Since static power, IO power and clock power are not directly

related to the complexity of the design; those are excluded during power calcula-

tion on FPGA platform. For a given architecture, processing time is calculated by

subtracting positive time slack from the constrained time.

The proposed approximation method reduces hardware complexity significantly as
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compared to that of the reference architecture. The proposed architecture is multiplier-

less and Case-II uses merely 58% of the total adders as compared to that of the ref-

erence architecture. The power and area (i.e., LUTs) requirements for the proposed

architecture reflect the complexity reduction. The proposed architecture consumes

70% less power, whereas number of LUTs required is less than one-fourth to that of

the reference design. At the same time, processing time has also shortened. It can

be observed from Table 4.10 that area-delay product for all the proposed N-point

DCT architectures is less and 77% reduction with respect to the reference architec-

ture is achieved for 32-point DCT. Note that, the area-delay product is calculated

by multiplying number of LUTs with processing time.

To further evaluate the performance of the proposed approximated architectures,

we compared the implementation results of the design in Case-II with some of the

existing designs. However, the input size of the proposed design is selected to be

8 bits for a fair comparison. These comparison results are presented in Table 4.11.

FPGA of same technology node is used in case of designs in [81], [82] and the

proposed one. But, the proposed architecture requires less number of hardware

resources than those two designs. Although the speed of the proposed architecture

is less, its throughput is four and eight times higher as compared to that of the

[81] and [82], respectively. Therefore, the proposed architecture can process more

number of samples per second as compared to those two architectures. The scalable

architecture [74] and the architecture in [78] are pipelined architectures. They use

registers after each stage of addition operations to improve operating frequency. The

JAM [73], Scalable [74] and the architecture in [78] use square wave approximation

of DCT. As a result, the number of LUTs required for those architectures is less.

However, the PSNR comparison shows that the accuracy of those architectures is

lower as compared to that of the proposed architecture. Additionally, the WHT
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architecture in the proposed design can be shared with the prediction unit of the

codec. It reduces overall processing time and hardware cost as the precomputed

WHT coefficients from the prediction stage can be used to compute DCT. Hence, the

proposed architecture provides a good trade-off between the accuracy and hardware

cost. Minimum 94 MHz operating frequency is required to process 8K UHD at 30

frames/s in 4:2:0 YUV format [68]. Therefore, the FPGA implementation of the

proposed architecture (Case-II) can support 8K video in real-time.

4.5 Summary

This chapter explains the derivation of the approximated forward and inverse core

transform matrices. These alterations are made with the intention to reduce the

implementation complexity of an HEVC encoder bearing only a minimal tolerance

on the coding performance. A new algorithm is proposed to reduce complexity of the

matrices by replacing it by dyadic values which are easy to implement in hardware

and incur less complexity. The algorithm results minimum approximation errors

and it is applied on Walsh–Hadamard Transform (WHT) based DCT and IDCT

architectures. To achieve that, two new generalized models of HEVC compliance

DCT and IDCT kernel have been proposed using WHT based matrix decomposition

method. Thereafter, a few approximated architecture are implemented to provide

different trade-offs between coding accuracy and hardware complexity.




