
Chapter 3

Transform Core in HEVC

The transform operation plays a vital role in hybrid video coding technique. HEVC

uses hybrid video coding mechanism and involves variable size higher order DCT for

spatial to frequency domain transformation. In this chapter, the forward and inverse

transform process used in HEVC has been discussed in detail. Design of different

transform architectures and their hardware complexities are analyzed. Finally, an

optimized transform architecture is proposed and assessment of the proposed archi-

tecture in terms of video coding performance, as well as hardware cost, is presented.

3.1 Introduction

Transform operations are playing a vital role in the field of signal and systems for

decades. Sometimes a signal becomes easier to handle in the frequency domain as

compared to the spatial domain and hence, a conversion from spatial to frequency

domain is performed by forward transform operation. On the other hand, the inverse

transform performs frequency to spatial domain conversion to recover the original

43



Chapter 3. Transform core in HEVC 44

Figure 3.1: Typical dataflow in standard video codec

signal. Like HEVC, most of the standard video codecs follow the hybrid video coding

scheme [92] which uses transform operation to achieve high compression efficiency.

It has been observed that one of the reasons behind the high compression efficiency

of HEVC is its large and flexible transform coding ability [13].

3.2 Transforms in HEVC

In recent years, every standard video codec employs prediction as well as transform

operations, as shown in Fig. 3.1. The prediction operations remove the spatial

and temporal correlations in a video sequence. A residual signal is generated by

subtracting the prediction signal from the original signal. The residual signal can be

further decorrelated by applying transform operation. As the HVS is not sensitive

to high frequency components, those are quantized and the coefficients are entropy

coded into bit-stream.

It is expected that HEVC can reduce the bit rate by 50% as compared to that of

the H.264/AVC [11] to achieve the same visual quality. To achieve this saving, a

large number of new features have been introduced in the HEVC. One of them is

large and variable size TU. TU is a primary unit in HEVC wherein residual data

are transformed and quantized. The size of the TU varies from 4 × 4 to 32 × 32 to



Chapter 3. Transform core in HEVC 45

support variable size transforms. A transform operation is performed in each size of

TU to obtain energy compaction. But, the effective size of TU is determined during

RDO operation [94].

The Karhunen-Loàve Transform (KLT) [102] is the first choice for transform oper-

ation as it has the optimum energy compaction and the signal decorrelation ability

[27]. Despite of optimum performance of KLT, it has some limitations and it is

very hard to implement for real-time applications [92]. As a result, it is rarely used

in practical applications like image and video coding algorithms. For practical and

real-time applications, a transform must have fast computational algorithm so that

an efficient VLSI architecture implementation is possible. Moreover, the transform

must have energy compaction and the signal decorrelation ability as close to the

KLT. It has been observed that a family of the sinusoidal transforms have almost

similar energy compaction and decorrelation capabilities as that of the KLT [102].

This family comprises of different types (i.e., type I–VIII) DCT and DST. Although

all of them are originated from sine and cosine functions, their basis vectors are

different from each other. Further details of these transforms are available in [20].

The HEVC draft has adopted two different transform operations: a core transform

and an alternative transform [11]. The core transform is an integer approximation

of DCT type II and III, whereas alternative transform is integer approximation of

DST type VI and VII. The alternative transform is applied to only intra-predicted

residual block of size 4× 4 for luma component. For all the remaining TUs, the core

transform is applied.



Chapter 3. Transform core in HEVC 46

3.2.1 DCT and IDCT

Since the last few decades, DCT is playing a key role in image and video compres-

sions. Its strong energy compaction capability and decorrelation property make it

popular in most of the image and video coding tools such as JPEG, MPEG, H.261,

H.263, H.264/AVC and the latest HEVC. To handle the growing demand of high

resolution multimedia services, efficient DCT computation and its VLSI implemen-

tation is a major research topic in the field of circuits and systems.

In all standard video coding specifications which are based on the hybrid video

coding scheme, the DCT-II and DCT-III transform pair is used for transformation of

the prediction error, where DCT-II is the forward and DCT-III is the corresponding

inverse transform. Since this is the most commonly used DCT pair, it is often

referred to as the DCT and IDCT, respectively.

In general, 2D DCT is used for energy compaction in block based video coding

process, including HEVC. The equation for a 2D DCT of block size M ×N is defined

as [102]:

F (u, v) =
M−1
∑
m=0

N−1
∑
n=0

√
km
M

√
kn
N

cos [
π(2m + 1)u

2M
] cos [

π(2n + 1)v

2N
]f(m,n), (3.1)

where

kp =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1√
2
, if p = 0

1, otherwise.

(3.2)

Here, f(m,n) and F (u, v) represent the (m,n)th and (u, v)th elements of the input

and output blocks, respectively.



Chapter 3. Transform core in HEVC 47

The hardware design for direct computation of (3.1) requires very complex architec-

ture and may not be economical from the perspective of hardware resource require-

ment. Although those designs may have very high performance ability, but at the

same time they demand high hardware cost, power consumption and greater design

efforts.

The alternate design approach takes the advantage of the separable property of 2D

DCT. Using this property of DCT, (3.1) can be written as

F (u, v) =
M−1
∑
m=0

√
km
M

cos [
π(2m + 1)u

2M
]f̂(m,v), (3.3)

where

f̂(m,v) =
N−1
∑
n=0

√
kn
N

cos [
π(2n + 1)v

2N
]f(m,n). (3.4)

Note that, (3.3) and (3.4) represent row-wise and column-wise 1D transform of the

block, respectively. It shows that the 2D DCT of a block can be calculated by

performing 1D column and row transform consecutively. Two different types of

architecture are possible based on the separable property of 2D DCT. These are as

follows:

1. Full-parallel Architecture

A full-parallel 2D DCT architecture is shown in Fig. 3.2 which uses two 1D

Figure 3.2: Block diagram of full-parallel architecture



Chapter 3. Transform core in HEVC 48

DCT cores [68]. The first DCT core performs a column-wise transform opera-

tion of the input TU, while the second core furnishes a row-wise transformation

of the intermediate results. After the column transform, the intermediate re-

sults are stored in a Transpose Memory (TM) in matrix form. Such TM block

performs transposition of the block obtained after the column-transformed op-

eration and ensures data ordering as required by the row transform operation.

2. Folded Architecture

The most popular architecture for 2D DCT computation is folded architecture

[68]. Fig. 3.3 shows the block diagram for a folded architecture in which

a single 1D DCT core is used to compute column as well as row transform.

The input data are fed to the DCT core from either external circuit or TM

block during column or row transform, respectively. The folded architecture

is efficient than that of the full-parallel architecture in terms of area required

to implement the design. However, the throughput of the folded architecture

is less as compared to full-parallel architecture.

As per the draft, all the TUs used in HEVC are square in shape [11]. For the square

shaped (i.e., M = N) blocks, (3.3) and (3.4) become identical and can be expressed

Figure 3.3: Block diagram of folded architecture



Chapter 3. Transform core in HEVC 49

as

yi =
N−1
∑
j=0

xjd
N
i,j . (3.5)

Here, y = [y0, y1, . . . , yN−1]T represents the N-point 1D DCT outputs of input sam-

ples x = [x0, x1, . . . , xN−1]T and dNi,j represents different DCT coefficients for i, j =

0,1, . . . ,N − 1. The coefficient dNi,j can be defined as

dNi,j =

√
k

N
cos [

π(2j + 1)i

2N
] , (3.6)

where k = 1 and 2 for i = 0 and i > 0, respectively. In terms of matrix product, (3.5)

can be written as

y =DN .x , (3.7)

where DN represents N -point DCT coefficient matrix of size N ×N . A DCT coef-

ficient matrix of size 4 × 4 is shown in (3.8).

D4 =
1

√
4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1
√

2 cos(π8 )
√

2 cos(3π
8 ) −

√
2 cos(3π

8 ) −
√

2 cos(π8 )

1 −1 −1 1
√

2 cos(3π
8 ) −

√
2 cos(π8 )

√
2 cos(π8 ) −

√
2 cos(3π

8 )

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.8)

The equation for 2D IDCT shares the same separable property with that of the DCT.

Hence, 2D IDCT can also be computed by row-column decomposition method. Like

DCT, the 1D IDCT can be computed as

xj =
N−1
∑
i=0

yid
N
i,j , (3.9)



Chapter 3. Transform core in HEVC 50

where dNi,j is the same coefficient as defined in (3.6). Therefore, in terms of matrix

product, the IDCT can be written as

x =DN
−1.y =DN

T .y . (3.10)

It is clear from (3.7) and (3.10) that DCT and IDCT matrices are the same but they

are transpose of each other. Therefore, they share same set DCT matrix properties

as described below [66].

1. The coefficients di = {di0, di1,⋯, di(N−1)} in the matrix DN form the basis

vector. The basis vectors are orthonormal to each other, i.e.

di
T .dj = 0 for i ≠ j;

= 1 otherwise. (3.11)

Since basis vectors are orthonormal, good compression efficiency as well as

energy compaction can be achieved using DCT.

2. The even basis vectors (i.e., for i = 0,2,⋯,N−2) are symmetric, whereas all the

odd basis vectors (i.e., for i = 1,3,⋯,N −1) are anti-symmetric. This property

is used to reduce the number of arithmetic operations performed during DCT

and IDCT computation.

3. It can be observed that the coefficients of lower order DCT/IDCT matrix are

the subset of the coefficients in higher order DCT/IDCT matrix. For example,

coefficients in 4×4 matrix are the subset of coefficients in 8×8 matrix. Similarly,

coefficients in 8×8 matrix are subset of coefficients in 16×16 matrix and so on.



Chapter 3. Transform core in HEVC 51

Due to this property, hardware resource sharing is possible during different

size of DCT computation in HEVC.

4. All the elements in DCT/IDCT matrix (DN/DT
N) have small number of dis-

tinct values. The N -point coefficient matrix DN of size N ×N consists of 2m−1

number of unique coefficients with different magnitudes, where m = log2N .

5. Other than the symmetry and anti-symmetry properties, the coefficients of

a DCT matrix follow some trigonometric relationships which can be further

exploited to reduce arithmetic operations. These properties can also be utilized

to implement fast algorithms such as Chen’s fast factorization [38].

3.3 Integer transform in HEVC

DCT and IDCT are the most popular transform used in image and video coding

standards including JPEG, MPEG-2 and H.263 due to its high energy compaction

ability and efficient computational algorithm. However, it is clear from the discus-

sion in the previous section that DCT, as well as IDCT, are real-valued transforms

and very high precision is required during computation. This is the major concern

during the hardware implementation of DCT and IDCT. It requires high precision

floating point multipliers, which incur high hardware cost. Additionally, high pre-

cision operations can cause encoder-decoder mismatch and drifting error [66]. To

minimize this drift between encoder and decoder implementations and to reduce

hardware cost, HEVC has adopted integer approximation of DCT and IDCT matri-

ces [11]. In integer transform, all the real-valued DCT coefficients are scaled by a

large number and then rounded to the nearest integer. Therefore, integer transform



Chapter 3. Transform core in HEVC 52

matrix CN can be written as

CN = ⌊const. ×DN ⌉, (3.12)

where ⌊∗⌉ represents rounding operation. This type of integer DCT has almost

similar coding performance as that of the real-valued DCT and its hardware imple-

mentation requires less number of computations [66].

Prior to HEVC, H.264/AVC also used integer transforms of size 4× 4 and 8× 8 [67].

But, HEVC included additional larger transforms of size 16× 16 and 32× 32. In the

case of higher order transforms, the approximation error in the frequency domain

becomes considerable [20]. To address this issue, a large scaling factor is selected so

that it maintains the following specifications [66]:

� Closeness to original DCT matrix: The properties and performance of the

derived integer matrix must be as close as possible to that of the original DC-

T/IDCT matrix. The closeness of integer matrix is measured using following

equation:

mij = ∣const × dij − cij ∣/c00 (3.13)

The cij is (i, j)th element of the integer matrix CN .

� Almost orthogonal basis vectors: Orthogonal property of basis vectors is the

key behind energy compaction ability. The basis vectors in the derived integer

matrix must also maintain this property as far as possible. The orthogonality

measure of the integer transform can be measured as:

oij = cicj
T /c0c0

T , for i ≠ j. (3.14)



Chapter 3. Transform core in HEVC 53

Here, ck = [ck0, ck1,⋯, ck(N−1)] are the basis vectors of the integer matrix for

k = 0,1,⋯,N − 1.

� Almost equal norm for basis vectors: DCT matrix is an orthonormal matrix.

Therefore, derived basis vector must maintain near about norm so that a

normalizing factor can be used to recover the signal. This property is necessary

to maintain a simple quantization and dequantization methods. The norm of

the derived integer matrix is measured as follows:

ni = ∣1 − cici
T /c0c0

T ∣. (3.15)

Norm measure shown in (3.15) reflects the actual deviation of the derived basis

vector from the equal norm property.

� The coefficients of the integer transform matrix are selected such that they

can be represented using 8 bits including sign bit.

� Multipliers can be represented using 16 bits or less with no cascaded multiplica-

tions or intermediate rounding. The accumulators, if used, can be implemented

using less than 32 bits.

� Coefficients of lower order DCT/IDCT matrix are the subset of the coefficients

in higher order DCT/IDCT matrix. This property must be maintained by de-

rived integer transform so that a single core can compute all size of transforms

used in HEVC.

To satisfy all the aforesaid conditions, scaling factor for N -point transform is selected

as:

const = 26+m
2 , where m = log2N. (3.16)



Chapter 3. Transform core in HEVC 54

To achieve an acceptable balance between few DCT properties, hand-tuning is also

performed to some of the scaled and rounded elements of the integer matrix. The

detailed description of the hand-tuning method can be found in [66]. After using

(3.12), (3.16) and hand-tuning operations, each DCT coefficient holds integer value.

For example, the integer matrix C4, which is a scaled, rounded and hand-tuned

version of D4 in (3.8), can be written as

C4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

64 64 64 64

83 36 −36 −83

64 −64 −64 64

36 −83 83 −36

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.17)

Note that, C4 has only three unique coefficients, which is one of the properties of

original DCT/IDCT matrix. Therefore, C4 can also be written as

C4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ0 γ0 γ0 γ0

α0 α1 −α1 −α0

γ0 −γ0 −γ0 γ0

α1 −α0 α0 −α1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.18)

where γ0 = 64, α0 = 83 and α1 = 36. Similarly, C8 has seven unique coefficients and

can be written as



Chapter 3. Transform core in HEVC 55

Figure 3.4: Left half of 32-point integer matrix (C32) with embedded 16-point
(C16) (yellow shading), 8-point (C8) (pink shading) and 4-point (C4) (green shad-

ing) matrices [66]



Chapter 3. Transform core in HEVC 56

C8 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ0 γ0 γ0 γ0 γ0 γ0 γ0 γ0

β0 β1 β2 β3 −β3 −β2 −β1 −β0

α0 α1 −α1 −α0 −α0 −α1 α1 α0

β1 −β3 −β0 −β2 β2 β0 β3 −β1

γ0 −γ0 −γ0 γ0 γ0 −γ0 −γ0 γ0

β2 −β0 β3 β1 −β1 −β3 β0 −β2

α1 −α0 α0 −α1 −α1 α0 −α0 α1

β3 −β2 β1 −β0 β0 −β1 β2 −β3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.19)

where β0 = 89, β1 = 75, β2 = 50 and β3 = 18. It is clear from (3.18) and (3.19) that

the coefficients of 4-point integer transform (C4) are embedded in 8-point integer

transform (C8). Similarly, the coefficients of 8-point are embedded in 16-point and

the coefficients of 16-point are embedded in 32-point transform. Therefore, all the

coefficients of 4, 8 and 16 -point transforms are embedded in a 32-point integer

transform matrix, as shown in Fig. 3.4. In this figure, only left half of the 32-

point integer matrix is shown as the size is very large and the missing right half of

the even and odd rows can be derived by symmetry and anti-symmetry properties,

respectively. All the embedded coefficients of 4-, 8-, and 16- point matrices are

shown by green, pink and yellow shadings, respectively.

The coding performance of the integer transform matrix is approximately similar

because it almost holds all the properties of DCT/IDCT matrix. Table 3.1 shows the

closeness (mij), orthogonality (oij) and normality (ni) measures of integer transform

matrices as per (3.13), (3.14), (3.15), respectively. It is clear from Table 3.1 that

the deviation from orthogonality and normality property for the derived integer

transform is very less and it closely approximate the original DCT/IDCT matrix.



Chapter 3. Transform core in HEVC 57

Table 3.1: Performance measures of the integer transform matrices [92]

Measures 4-point 8-point 16-point 32-point
mij <0.0213 <0.0213 <0.0213 <0.0213
oij 0 <0.0016 <0.0029 <0.0029
ni <0.0009 <0.0009 <0.0009 <0.0013

3.3.1 Hardware implementation and complexity analysis

The finite precision coefficients eliminate the use of floating point multipliers in in-

teger transform. Therefore, hardware implementation of integer transform is much

efficient as compared to that of the original DCT/IDCT. The straight forward im-

plementation of 1D integer transform performs a matrix multiplication operation as

shown in (3.7). Therefore, for an N -point input vector, the number of arithmetic

operations for a 1D forward/inverse transform via direct matrix multiplication is N2

multiplications and N(N–1) additions (including subtractions). For an N ×N input

block, the complexity of a 1D transform becomes N3 multiplications and N2(N–1)

additions/subtractions. The separable property of DCT enables a 2D transform to

be implemented via two 1D transforms with a transpose operation between them.

Thus, for a 2D transform of an N ×N input block, the complexity is 2N3 multipli-

cations and 2N2(N–1) additions/subtractions. However, transform matrix can be

decomposed using symmetry or anti-symmetry property of the basis vectors, which

significantly reduces the number of arithmetic operations. For example, using (3.7)

and (3.19), 8-point 1D forward transform can be calculated as



Chapter 3. Transform core in HEVC 58

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y0

y1

⋮

y7

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=C8.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x0

x1

⋮

x7

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ0 γ0 γ0 γ0 γ0 γ0 γ0 γ0

β0 β1 β2 β3 −β3 −β2 −β1 −β0

α0 α1 −α1 −α0 −α0 −α1 α1 α0

β1 −β3 −β0 −β2 β2 β0 β3 −β1

γ0 −γ0 −γ0 γ0 γ0 −γ0 −γ0 γ0

β2 −β0 β3 β1 −β1 −β3 β0 −β2

α1 −α0 α0 −α1 −α1 α0 −α0 α1

β3 −β2 β1 −β0 β0 −β1 β2 −β3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x0

x1

⋮

x7

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.20)

Here, [y0, y1, . . . , y7]T represents the N-point 1D DCT outputs of input samples

[x0, x1, . . . , x7]T . Using the symmetry and anti-symmetry properties, (3.20) can be

decomposed into even and odd parts as shown below

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y0

y2

y4

y6

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ0 γ0 γ0 γ0

α0 α1 −α1 −α0

γ0 −γ0 −γ0 γ0

α1 −α0 α0 −α1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x0 + x7

x1 + x6

x2 + x5

x3 + x4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=C4.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x0 + x7

x1 + x6

x2 + x5

x3 + x4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; (3.21)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1

y3

y5

y7

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β0 β1 β2 β3

β1 −β3 −β0 −β2

β2 −β0 β3 β1

β3 −β2 β1 −β0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x0 − x7

x1 − x6

x2 − x5

x3 − x4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=B4.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x0 − x7

x1 − x6

x2 − x5

x3 − x4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.22)



Chapter 3. Transform core in HEVC 59

The odd-even decomposition method for the 8-point transform can be extended to

any N -point transform as follows:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

yN0

yN2

⋮

yNN−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=CN
2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a0

a1

⋮

aN/2−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.23)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

yN1

yN3

⋮

yNN−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=BN
2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b0

b1

⋮

bN/2−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.24)

where

an = xn + xN−n−1,

bn = xn − xN−n−1.
(3.25)

BN
2

is a matrix of size N
2 × N

2 for odd coefficient calculation and its coefficients at

(i, j)th location can be expressed as

b
N
2
i,j = c

N
2i+1,j for 0 ≤ i, j ≤ (

N

2
− 1) (3.26)

where cN2i+1,j is (2i + 1, j)th coefficient in matrix CN .

The odd-even decomposition method significantly reduces the complexity of the

transform operation. In general, for the two-dimensional N-point transform opera-

tion, the number of multiplications and additions (excluding the rounding operations

associated with the shift operations) required can be given by [66]



Chapter 3. Transform core in HEVC 60

Figure 3.5: A generalized hardware model for N-point 1D integer transform
computation

Omult = 2N
⎛

⎝
1 +

log2N

∑
k=1

22k−2⎞

⎠
, (3.27)

Oadd = 2N
⎛

⎝

log2N

∑
k=1

2k−1(2k−1 + 1)
⎞

⎠
. (3.28)

Figure 3.6: Hardware sharing model of forward transform used in HEVC [66]



Chapter 3. Transform core in HEVC 61

Odd-even decomposition method is one of the most popular methods used to imple-

ment integer transform in hardware. An architecture for N-point integer transform

is shown in Fig. 3.5 which uses odd-even decomposition method. Hardware realiza-

tion of CN requires an Input Butterfly (IB) unit and other two units: one to produce

even coefficients (CN
2

) and other for odd coefficients (BN
2

, as shown in the dotted

box). From the hardware implementation perspective, a multiplication is considered

as an expensive operation because it requires a large number of physical resources

and chip area, especially while implementing large algorithms such as the 2D 32×32

HEVC core transform. Hence, all the multiplications are realized by shift and add

operations to avoid the use of multipliers. In integer transform computation, a sin-

gle input is multiplied by different coefficients which are fixed. MCM blocks are

used to realize these constant multiplications. MCM is very popular for constants

multiplication and further details on MCM can be found in [69]. Such N
2 number

of MCMs and output adder trees are used to realize the module BN
2

. The CN
2

unit

can also be used to compute N
2 -point DCT. At this time, inputs (shown in brackets)

must be fed directly to CN
2

unit. Therefore, it is clear from Fig. 3.5 that the same

architecture can compute either N - or N
2 - point integer transform depending on the

input signal ‘SEL.’ Thus, a single kernel of 32-point transform (C32) consists of C16,

C8, C4 modules and hence, it can compute 4, 8, 16, 32 -point transforms depending

on the three select lines ‘SEL.’ Fig. 3.6 depicts a typical hardware resource sharing

model used in HEVC core transform. Multiplexers are not shown in the figure to

avoid clatter.



Chapter 3. Transform core in HEVC 62

3.3.2 Dynamic range and scaling

Finite precision integer transform has huge advantages over real-valued DCT/IDCT.

It not only reduces hardware complexity and drifting error, but also a single 32-

point transform core can compute transform operations of all sizes used in HEVC.

Additionally, multiplications with integer values can be achieved by add and shift

operations and thus, use of multipliers is eliminated during hardware realization.

However, one can notice that the norm of the basis vectors varies with the transforms

size. As a consequence, different quantization and de-quantization matrices are

required during different size transform computation. Implementation cost of these

non-flat quantization and de-quantization matrices is very high.

Another disadvantage of integer transform is its high dynamic range. As the integer

transform is derived by multiplying a large constant with the DCT/IDCT matrix, it

is obvious that a large number of bits are required to represent each of the outputs

[11]. Therefore, size of the TM required to store these outputs as well as bit-depth

of the intermediate data buses are very high. These all result increased chip area

and hardware cost.

In order to maintain a reasonable trade-off between accuracy and computational

complexity in the transform stage of HEVC, it was decided to limit the bit depth

of the coefficients after each transform stage as 16-bit signed integers, i.e., in the

range of [–215,215–1] or [–32768,32767] for any input of bit depth b [66]. Additional

intermediate scaling of ST1, ST2, SIT1, and SIT2 bits, as shown in Fig. 3.7, are

essential to achieve this requirement.

Residual data are generated after the prediction operation. The magnitude of resid-

ual data varies from −2b to 2b − 1, where b represents the bit depth of the video

sequence. Clearly, (b + 1) bits are required to represent the residual data, including



Chapter 3. Transform core in HEVC 63

the sign bit. At any instance, 2m number of such residual data are fed to the column

transform (DCT-I) operation. Therefore, the maximum absolute value of the output

samples after the column transform will be 26 × 2m × 2b which requires (b +m + 7)

bits, including sign bit. It requires ST1 = (b +m + 7 − bt) bits truncation to store

transformed data in a bt-bit transpose memory. Similarly, (bt +m + 6) bits are re-

quired to represent a sample of output data after row transform (DCT-II) operation.

Therefore, the amount of truncation required is ST2 = (m+ 6) bits to store the data

in the same memory.

In the case of 2D-IDCT, SIT1 and SIT2 represent bit truncations required after

the first and the second inverse transform, respectively. It requires (bt + 6) bits

to represent the maximum value after the first IDCT and SIT1 = 6 bits truncation

is required to store it in TM. On the other hand, these values are (bt + 6) and

SIT1 = bt + 5 − b bits, respectively after the second IDCT.

3.4 Tranform matrix with real-valued coefficients

Integer transform increases datapath length and the circuit delay, thereby limiting

the maximum speed at which a DCT block can operate. Additionally, it increases

Figure 3.7: Datapath details of forward and inverse transforms chain



Chapter 3. Transform core in HEVC 64

the hardware resource requirement. For example, the size of the TM used to store

intermediate results after the first transform, is large which can incur greater hard-

ware cost in terms of area and power. To maintain a reasonable trade-off between

accuracy and implementation cost, outputs are truncated after each transform and

stored in a TM of bit-depth 16. Consequently, there is a scope to redesign the trans-

form kernel such that the intermediate data depth is reduced. However, maintaining

DCT properties and accuracy up to a certain extent are the major challenges.

To address these issues, a transform architecture with a new set of fixed point

coefficients is proposed in this section so that truncation error does not affect the

performance of the transform core significantly. The magnitude of each coefficient

is kept as small as possible such that intermediate data path gets optimized and

operating speed of the transform block is maximized. A reasonable trade-off between

computational accuracy and its hardware cost is achieved with this architecture.

3.4.1 Fixed Point Approximation of DCT Coefficients

It can be verified from (3.6) that elements of N -point DCT have (N −1) distinct val-

ues and DCT computations require floating point multiplications with these values.

Realizing these floating point multiplications with infinite precision and at the same

time maintaining properties of DCT matrix are the main challenges. On the other

hand, integer transform has finite precision, but high dynamic range. To address

these issues and to make hardware implementation of DCT matrix more efficient,

all the real-valued coefficients of 32-point DCT are represented in fixed-point format

and are expressed as

d32i,j =
a

2l
≈

√
k

32
cos [

π(2j + 1)i

64
] , (3.29)

where a and l are integers, k = 1 and 2 for i = 0 and i > 0, respectively.



Chapter 3. Transform core in HEVC 65

Figure 3.8: Maximum error versus scaling factor plot

With this approach, DCT can be performed by integer multiplications and right shift

operations. However, hardware implementation of this method can produce large

truncation error. To reduce the truncation error, the matrix obtained is multiplied

by a scaling factor 2n, where n is an integer. Therefore, any element of the proposed

DCT matrix RN can be written as

rNi,j = 2n × dNi,j , (3.30)

where dNi,j is expressed using (3.29). The magnitude of n determines the truncation

errors which can be calculated as

err = x − x̂ ,

where x̂ = (R32
T
(R32.x)) >> 2n.

(3.31)

The symbols (.)T and ‘>>’ specify transpose and right shift operations, respectively.

Input vector x, containing a single non-zero element, is selected to produce all

the frequency components at the output. However, the amplitude of this nonzero



Chapter 3. Transform core in HEVC 66

Table 3.2: Comparison of coding performances

Eor Enr Ecl Cg η
Integer transform 0.0029 0.0014 0.0213 9.770 81.401
Proposed real-valued transform 0.0023 0.0024 0.0199 9.768 81.654

element is varied from the lowest to the highest value that a residual sample can

take. To calculate the error, we have implemented R32 and RT
32

with different values

of n in MATLAB using the hardware based approach as proposed in [68]. Fig. 3.8

depicts the maximum error which results with different values of n. This figure

shows that the error is the minimum when n = 3 and it remains constant thereafter.

Therefore, n = 3 is used to optimize the proposed DCT design for HEVC with least

errors. Hence, 31 distinct values for 32-point DCT become

r32i,0 ={2,2,127/26,63/25,31/24,245/27,15/23,59/25,29/24,113/26,55/25,53/25,

103/26,99/26,3/2,181/27,43/25,5/22,19/24,71/26,1,15/24,55/26,25/25,

43/26,37/26,31/26,25/26,9/25,3/24,3/25},

(3.32)

where i = 1,⋯,31.

To verify the degree of approximation of the proposed DCT matrix, the maximum

errors in the -closeness to DCT (Ecl), -orthogonality (Eor) and -norm (Eno) were

calculated as defined in (3.13), (3.14), (3.15), respectively. The coding gain (Cg),

the transform efficiency (η) were calculated as defined in [20] and the value of these

parameters are compared with the integer DCT in [66] and the results are presented

in Table 3.2. It shows that the proposed matrix approximately holds all the proper-

ties with minimal errors which are comparable to that of the HEVC core transform

matrix [66].



Chapter 3. Transform core in HEVC 67

A 32-point DCT is selected for error analysis because truncation error is large in

the higher order DCT than that of the lower order. However, coefficient values for

lower order DCTs are the subsets of (3.32) and can be written as

r
N
2
i,j = r

N
2i+1,j × SN , for 0 ≤ i, j ≤ (

N

2
− 1). (3.33)

Here, scaling factor SN =

√
32
N = 2

5−m
2 and m = log2N . For 2D DCT/IDCT this

factor becomes 25−m which can be easily obtained with left shift operation on input

vectors.

3.4.2 Data Flow Model of 2D DCT

The proposed data flow model of 2D -forward and -inverse transform for HEVC main

profile is shown in Fig. 3.9. A single core is used for all sizes of DCT calculations.

Therefore, inputs are multiplied by a scaling factor S2
N as shown in (3.33). This

increases the accuracy of the lower order DCTs using the same hardware resources.

In HEVC, 2D DCT of residual data is calculated by row and column transform

consecutively. The maximum absolute value of the output samples after the first

transform will be 2(b+
11
2
) where, b is the bit depth of the video. It requires ST1 =

(b+ 7− bt) bits truncation to store transformed data in a bt-bit TM. Similarly, after

second transform the maximum value of output samples will be 2bt+m−1. Therefore,

the amount of truncation required is ST2 = m bits to store the data in the same

memory.

This entails that a 15-bit transpose memory is enough to process a video with bit-

depth 8 and it does not require any truncation after the first DCT operation. We

have selected ST1 = ST2 = m, and scaling factor S2
N = 25 to design an uniform



Chapter 3. Transform core in HEVC 68

Figure 3.9: Datapath details for the proposed real-valued forward and inverse
transforms

architecture for 8-bit video signal. Hardware cost of the folded architecture can be

optimized in this manner.

In the case of 2D IDCT, SIT1 and SIT2 represent bit truncations required after the

first and the second inverse transform, respectively. The maximum absolute value

after the first IDCT will be 2(bt−
1
2
) and truncation required SIT1 = 1 bit. On the

other hand, after the second IDCT, the maximum absolute value will be 2bt−1 and

SIT2 = bt−b−1 bits truncation is required to recover the residual data. Scaling factor

S2
N is not considered in the inverse transform as it increases the hardware cost for

IDCT. It is clear from this discussion that the norm of the residual data can be

preserved during forward and inverse transform by bit truncation operations.

3.4.3 Hardware implementation

The real-valued transform matrix obey symmetry and anti-symmetry properties

of DCT. Hence, all the lower order DCTs can be realized by using the hardware

implemented for even output coefficients of next higher order DCT. Therefore, an

N -point DCT architecture can be reused to compute N
2 -point DCT where, N = 4,

8, 16, 32. Therefore, the generalized hardware model for N -point DCT is similar



Chapter 3. Transform core in HEVC 69

Figure 3.10: Architecture of (a) 4-point DCT (b) 2-point DCT (c) 2-point IDCT

to Fig. 3.5. An example of 4-point DCT architecture is discussed in the following

subsection.

3.4.4 4-point DCT architecture

The proposed 4-point DCT architecture is shown in Fig. 3.10. It consists of an

IB unit which produces a0, a1, b0, and b1 according to (3.25). In the next stage, a

2-point DCT architecture is used to produce even output coefficients, whereas two

MCMs and output adder trees are used to produce odd output coefficients.

3.4.4.1 2-point DCT

The proposed 2-point DCT and IDCT can be expressed as

C2 =KDCT .

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1

1 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, CT
2 =KIDCT .

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1

1 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.34)



Chapter 3. Transform core in HEVC 70

Note that KDCT =KIDCT = 181
27 from (3.32). In order to recover the original unscaled

signal after forward and inverse transform these constants must satisfy (3.35).

KDCT .KIDCT = 2 . (3.35)

Therefore, we selected KDCT = 1 and KIDCT = 2 to reduce implementation cost. The

design for 2-point DCT and IDCT are shown in Fig. 3.10 (b) and (c), respectively.

3.4.4.2 MCM

The odd coefficients for 4-point DCT can be written as

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1

y3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= [B2].

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b0

b1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

o0 o1

o1 −o0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b0

b1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.36)

From (3.32), elements of matrix B2 can be identified as o0 =
59
25 and o1 =

25
25 . Here,

fixed point multiplications are achieved with MCMs and hardware complexity is

reduced. For all N, we followed the Hcub algorithm [69] to minimize the critical

path of the MCMs. As a result, the maximum adder depth in any MCMs unit does

not exceed two as compared to that of three in [68]. However, right- as well as left-

shift operations are used to achieve desired constant multiplications. Such type of

an MCM used in 4-point DCT is shown in Fig. 3.11(a).

3.4.4.3 Adder tree

Finally, outputs of the MCMs are added by adder tree unit to produce the final

results. Any adder tree in N -point DCT consists of (m − 1) adder stages. In the

proposed architecture, inputs are truncated by a single bit at every stage of adder



Chapter 3. Transform core in HEVC 71

Figure 3.11: (a) MCM (b) Adder tree architecture for 4-point DCT

tree and final outputs are produced by truncating one more bit. Therefore, m bits

truncation is achieved without any extra hardware. Fig. 3.11(b) shows an output

adder tree for 4-point DCT.

3.5 Results and Discussion

3.5.1 Coding Efficiency

The coding performance of the proposed real-valued DCT matrix is compared with

the integer DCT matrix of the HEVC reference software [12]. All the experiments are

performed on HM-16.15 reference software with common test conditions as described

in [103]. Input sequences from five different classes are used. These are Traffic

2560 × 1600, PeopleOnStreet 2560 × 1600, Kimono 1920 × 1080, ParkScene 1920 ×

1080, BasketballDrillText 832 × 480, BQMall 832 × 480, BasketballPass 416 × 240,

RaceHorses 416× 240, Johnny 1280 × 720 and FourPeople 1280 × 720. The standard

BD-rate approach is followed [88] to calculate PSNR variations with four different

QP values (i.e., 22, 27, 32 and 37). The comparison results in terms of combined

PSNR (i.e., YUV-PSNR) variation for AI, LD and RA encoder configurations are

presented in Table 3.3. Note that the negative PSNR difference represents coding



Chapter 3. Transform core in HEVC 72

Table 3.3: PSNR variation with respect to the reference algorithm

Class Sequences AI LD RA

A (WQXGA))
Traffic -0.004 - -0.000
PeopleOnStreet -0.003 - 0.001

B (1080P)
Kimono -0.018 -0.008 -0.008
ParkScene -0.004 -0.003 -0.002

C (WVGA)
BasketballDrill -0.004 0.005 -0.004
BQMall 0.000 -0.003 0.009

D (240i)
BasketballPass -0.001 -0.011 -0.007
Racehorses -0.000 -0.023 -0.017

E (720p)
Johnny -0.010 0.041 -
FourPeople -0.004 -0.008 -

loss compared to that of the reference software. It is evident from Table 3.3 that

the maximum PSNR variation with the proposed DCT matrix is less than 0.05 dB

compared to that of the HEVC reference algorithm. However, the dynamic range of

the proposed real-valued DCT matrix is less as compared to the integer DCT matrix.

Therefore, hardware implementation of the proposed DCT matrix is less complex

and has higher speed as compared to that of the reference algorithm as shown in the

subsequent sub-sections. Additionally, the proposed algorithm requires an array of

15-bit memory, whereas HEVC reference algorithm needs an array of 16-bit memory

to transpose intermediate data.

3.5.2 Implementation Results

3.5.2.1 FPGA implementation

The proposed 1D DCT architecture has been coded in Verilog for N = 4,8,16 and 32.

It is synthesized using Xilinx Vivado 2016.2 and implemented on Virtex-7 FPGA.

For comparison purpose, we have also implemented the integer DCT architecture as

proposed in [68]. However, MCMs of the integer DCT architecture are re-designed

with Hcub algorithm [69]. Detailed synthesis report and complexity comparison in



C
h
ap

ter
3.

T
ran

sform
core

in
H

E
V

C
73

Table 3.4: Synthesis results and complexity comparison for 1D DCT architectures

Architecture Size LUT SLICE
Time
(ns)

Power
(mW)

Area-Delay
product

Area-Delay
product reduction

Power
reduction

Add Shift

Integer DCT [68]
+ Hcub [69]

4 293 87 4.097 10 1200.1 - - 14 10
8 1189 352 5.643 44 6709.5 - - 54 30
16 4313 1213 6.84 154 29500.9 - - 198 118
32 13876 3970 9.642 629 133792.4 - - 710 404

Proposed real-
valued DCT

4 218 67 3.766 6 821 31.6% 40% 14 10
8 904 271 5.504 31 4975.6 25.8% 29.5% 54 38
16 3026 869 6.326 96 19142.5 35.1% 37.7% 182 126
32 10256 3004 8.154 356 83627.4 37.5% 43.4% 614 334



Chapter 3. Transform core in HEVC 74

terms of number of adders/subtractors and shifters are presented in Table 3.4. The

input and output bus width of both architectures is 16 bits. Registers are inserted

at the input and the output stage to compute the frequency of operation. Vector

less power estimation is performed with the clock constrained at 100 MHz.

FPGA implementation of the proposed 32-point 1D DCT operates at 122.6 MHz

frequency. It is clear from Table 3.4 that the hardware complexity of the proposed

architecture is less as compared to the integer DCT. Consequently, FPGA imple-

mentation of the proposed architecture requires less area and power as compared to

that of the integer DCT architecture [68]. The synthesis results show that area-delay

product and power consumption of the proposed 32-point architecture is 37.5% and

43.4% less than that of the integer DCT architecture, respectively. It is because

the multiplications in the integer DCT architecture increase intermediate data bus

width. It increases intermediate processing element size as well as processing time.

On the contrary, the proposed architecture uses a scaled version of real-valued DCT

coefficients. So, the intermediate data bus width is small. Consequently, the inter-

mediate processing elements size and processing time are less as compared to the

integer DCT.

3.5.2.2 ASIC implementation

We have also coded a reusable architecture [68] of the proposed method to produce

constant throughput irrespective of the DCT size. The source code of the reusable

architecture is synthesized by Synopsys Design Compiler using 90-nm standard cell

library [104] and results are compared with some of the existing DCT/IDCT ar-

chitectures. These comparison results are presented in Table 3.5. Here, gate count

has been estimated by normalizing total area with respect to the area of 2-input

NAND gate and power has been calculated at 100 MHz. It is observed that the



Chapter 3. Transform core in HEVC 75

Table 3.5: Comparison of ASIC implementations

[68] [75] [71] [76] Prop.
Technology 90 nm 90 nm 90 nm 90 nm 90 nm
Gate counts 131 K 115.7 K 163 K 63.8 K 88.6 K

Max. Freq. (MHz) 187 200 250 270 256.4
Power (mW) 23.1 - - - 16.2

Max. Throughput
(samples / clock)

32 32 25.7 8 32

FoM 45.64 55.32 39.4 33.85 92.6

proposed architecture requires 88.6K logic gates at 256.4 MHz operating frequency.

To maintain a constant throughput of 32 samples/clock, the proposed architecture

requires less number of gates and can operate at a higher frequency as compared to

that of the designs in [68], [75] and [71]. The performance comparison shows that

the designs in [76] operate at a higher frequency. However, its maximum throughput

is 8 samples/clock and it depends on the size of DCT also. Therefore, it does not

support 8K video with 60 FPS in 4:2:0 YUV format. But, with constant throughput

(32 samples/clock) the proposed architecture can process 329 fps and 82 fps of 4K

and 8K video, respectively in 4:2:0 YUV format. To determine the overall efficiency,

Figure of Merit (FoM) is computed as

FoM =
Total samples processed per second

Total gate counts × 103
. (3.37)

On the basis of FoM, it is clear that the proposed architecture is the better than the

reported ones.



Chapter 3. Transform core in HEVC 76

3.6 Summary

The transform operations used in HEVC are introduced in this chapter as these

operations serve the basis of this thesis. Particularly, the DCT as well as IDCT op-

erations and the difficulties to implement those in hardware platform are discussed

in details. The variable size integer transforms used in HEVC is discussed and its

complexity analysis and hardware implementation method are reviewed in details.

Finally, the disadvantage of integer transform is discussed and a new real-valued

optimized architecture is proposed with detailed data-flow model. The proposed

real-valued model uses a new set of fixed point coefficients which holds all the DC-

T/IDCT properties with minimal error and its coding efficiency is comparable to

that of the HEVC integer transform. Intermediate data length and complexity of the

proposed architecture is less as compared to that of the integer transform. There-

fore, it reduces the area requirement and processing time when implemented on

ASIC and FPGA platforms. The next chapter reveals the approximated transforms

aimed to reduce complexity of HEVC execution without severe degradation in the

reconstructed and decoded video quality.


