Appendix B

Simple Calculations Using EES Software

B.1 Calculation of Reynolds number

```
rho = density of oil=900[kg/m^3]

mu = coefficient of dynamic viscosity of thermal oil =0.027[kg/m-s]

d = helical coil tube diameter=0.005[m]

Q = flow rate of oil through helical coil tube=5.88[l/min]*convert(l/min,m^3/s)

A_c = area of cross section of tube of flow=(pi#/4)*d^2

v = velocity of flow=Q/A

Re = Reynolds number=rho*v*d/mu
```

B.2 Calculation of Prandtl number

```
C_p = specific heat capacity of oil =2061[J/kg-K]

k_con = thermal conductivity of oil=0.165[W/m-k]

b = pitch of the helical coil tube=24.38[mm]*convert(mm,m)

gama = dimensionless pitch of coil=b/(pi#*D_c)

Pr = Prandtl Number=mu*C_p/k_con
```

B.3 Calculation of curvature ratio

D_c = 0.025[m]

Delta = curvature ratio=d/D_c

B.4 Calculation of Dean number

 $De = Re*(delta)^0.5$

B.5 Calculation of helix number

He = $De/(1+(gama)^2)^0.5$

B.6 Experimental determination of h

m_dot = 0.0882[kg/s] "Mass flow rate of thermal oil"

C_p=2061[J/kg-k] "Specific heat capacity of HTF"

k_c=400[W/m-k] "Thermal conductivity of copper tube"

A_r=0.1137[m^2] "Receiver surface area"

t=0.001[m] "Thickness of the coil tube"

d=0.005[m] " Inner diameter of the coil tube"

L=5.172[m] " Total length of the helical coil"

T_i=53.3+273[K] " Inlet fluid temperature"

T_e=61.5+273[k] "Exit fluid temperature"

T_so=67.5+273[K] " Outer surface temperature of receiver tube"

T_m=(T_e+T_i)/2 "Mean fluid temperature"

Q_u= m_dot*C_p*(T_e-T_i) "Useful heat gain"

 $Q_u = (2*pi#*k_c*L*(T_si-T_so))/(LN((d+2*t)/d))$

 $h=Q_u/(A_r^* (T_si - T_m))$ "Convective heat transfer coeficient between coil fluid interface"

B.7 Calculation of thermal efficiency

m_dot=0.0882[kg/s] "Mass flow rate of thermal oil"

C_p=2061[J/kg-k] "Specific heat capacity of HTF"

k_c=400[W/m-k] "Thermal conductivity of copper tube"

A_r=0.1137[m^2] "Receiver surface area"

t=0.001[m] "Thickness of the coil tube"

d=0.005[m] " Inner diameter of the coil tube"

L=5.172[m] " Total length of the helical coil"

A_a=2.2487[m^2] " Aperture area of PTC"

T_i=53.3+273[K] " Inlet fluid temperature"

T_e=61.5+273[k] "Exit fluid temperature"

T_so=67.5+273[K] " Outer surface temperature of receiver tube"

 $T_m = (T_e + T_i)/2$ "Mean fluid temperature"

Q_u= m_dot*C_p*(T_e-T_i) "Useful heat gain"

 $Q_u = (2*pi\#*k_c*L*(T_si-T_so))/(LN((d+2*t)/d))$

h=Q_u/(A_r* (T_si - T_m)) "Convective heat transfer coeficient between coil fluid interface"

I_b=766[W/m^2] "beam solar radiation"

Eta=Q_u/(A_a*I_b) "Efficiency of experimental setup"

B.8 Calculation of pressure drop across the length of helical coil

m_dot=0.0882[kg/s] "Mass flow rate of thermal oil"

C_p=2061[J/kg-K] "Specific heat capacity of HTF"

k_c=400[W/m-K] "Thermal conductivity of copper tube"

A_r=0.1137[m^2] "Receiver surface area"

t=0.001[m] "Thickness of the coil tube"

d=0.005[m] " Inner diameter of the coil tube"

 $D_c = 0.025$ [m] "Curvature diameter of helical coil tube"

L=5.172[m] " Total length of the helical coil"

A_a=2.2487[m^2] " Aperture area of PTC"

v=4.991[m/s] "Velocity of flow"

rho=900[kg/m³] " Density of fluid"

Re=831.9 "Reynolda number"

 $f_{coil} = (344*(D_{c/d})^{(-0.5)})/(1.56+LOG10(Re*(D_{c/d})^{(-0.5)}))^5.33$ "Friction factor of helical coil tube"

DELTA_P=f_coil*(L/d)*0.5*rho*v^2 " Required pressure drop across the length of helical coil"

B.9 Simple Solutions

Unit Settings: [J]/[K]/	/[bar]/[kg]/[degrees]		
$A_c = 0.00001963 \text{ [m}^2\text{]}$	b = 0.02438	$C_p = 2061 [J/kg-K]$	d = 0.005 [m]
He = 355.3	k _{con} = 0.165 [W/m-k]	μ = 0.027 [kg/m-s]	Pr = 337.3
De = 372	δ = 0.2	D _c = 0.025 [m]	gama = 0.3104
Q = 0.000098 [m ³ /s]	Re = 831.9	$\rho = 900 \text{ [kg/m}^3\text{]}$	v = 4.991 [m/s]
Unit Settings: [J]/[K]/	[bar]/[kg]/[degrees]		
$A_r = 0.1137 \text{ [m}^2\text{]}$	$C_p = 2061 \ [J/kg-k]$	d = 0.005 [m]	$h = 1293 \text{ [W/m}^2\text{K]}$
t = 0.001 [m]	T _e = 334.5 [k]	T _i = 326.3 [K]	$T_{m} = 330.4 [K]$
k _c = 400 [W/m-k]	L = 5.172 [m]	m = 0.0882 [kg/s]	Q _u = 1491 [J]
T _{si} = 340.5 [K]	$T_{so} = 340.5 [K]$		
Unit Settings: [J]/[K]/	[bar]/[kg]/[degrees]		
$A_a = 2.249 \text{ [m}^2\text{]}$	$A_r = 0.1137 \text{ [m}^2\text{]}$	$C_p = 2061 [J/kg-k]$	d = 0.005 [m]
L = 5.172 [m]	m = 0.0882 [kg/s]	$Q_u = 1491 [J]$	t = 0.001 [m]
$T_{so} = 340.5 [K]$			
η = 0.8654	h=1293 [W/m ² K]	$I_b = 766 \text{ [W/m}^2\text{]}$	k _c = 400 [W/m-k]
T _e = 334.5 [k]	T _i = 326.3 [K]	$T_{m} = 330.4 [K]$	$T_{si} = 340.5 [K]$
Unit Settings: [kJ]/[C]	/[kPa]/[kg]/[degrees]		
$A_a = 2.249 \text{ [m}^2\text{]}$	$A_r = 0.1137 \text{ [m}^2\text{]}$	$C_p = 2061 [J/kg-K]$	d = 0.005 [m]
L = 5.172 [m]	m = 0.0882 [kg/s]	Re = 831.9	ρ=900 [kg/m ³]
Δ _P = 928982 [Pa]	$D_c = 0.025 [m]$	f _{coil} = 8.012E-02	k _c = 400 [W/m-K]
t = 0.001 [m]	v = 4.991 [m/s]		