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Chapter 2 

Preliminaries 

2.1 Introduction 

This chapter is a discourse to the essential definitions, mathematical relations and their 

properties for understanding the fractional calculus. The chapter also provides a brief 

overview of fractional-order systems, approximation of fractional order operators, 

fractional order control and fractional order toolbox for MATLAB. Although the 

preliminaries elaborated in the chapter is not a complete overview of fractional order 

calculus but they illustrate the major essentials used in this thesis.  

2.2 Mathematical Preliminaries 

Fractional calculus and fractional control involve a lot of mathematics. As a result, a brief 

and essential introduction of the mathematical definitions and formulas is provided here 

for understanding the proposed work.  

2.2.1 Gamma function 

The gamma function plays an important role for calculating the Laplace transform of non-

integer power of ‘�’. Usage of the function conveniently defines certain formulas related 

to fractional calculus [4]. It is defined in different manner depending on its application. 

The most elementary definition of the gamma function is Euler’s integral, given as: 

   1

0
(z) ,u ze u du


      (� > 0)                            (2.1) 

For convergence of the integral, it is restricted to positive values of z such that it 

can fulfill at least one of the following conditions: z ∈ R�, z ∉ {{0} ∪ Z�}, or Im[z] ≠ 0. 

Some of the properties of gamma function are given as: 
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I. The most significant property is by applying integration by parts in (2.1); 

resulting in: 

     (z 1) z (z)                       (2.2) 

II. If � = � (a positive integer), then the gamma function is defined in terms of a 

factorial function as: 

     (n) ( 1)!n                      (2.3) 

III. For some particular value of � there exist an exact values of Γ(�). Then the 

gamma function calculated at � = 1
2�   is  

          
1

2


 
  
 

                      (2.4) 

 The value of the gamma function for any positive real number is calculated by 

using the above three properties and it lies between 1and 2 [4]. 

2.2.2 Mittag-Leffler function 

This function was introduced by the Swedish mathematician G. M. Mittag-Leffler (1846-

1927). It is a generalized form of the exponential function that plays a significant role in 

fractional calculus. Two different forms of the Mittag-Leffler function is given below [4].  

Definition 1: The one-parameter representation of the Mittag-Leffler function is given as: 

                                        
0

( ) , ( 0)
( k 1)

k

k

t
E t 







 
 

                                          (2.5) 

Definition 2: The two-parameter representation of the Mittag-Leffler function is given as: 

                                       ,
0

( ) , ( , 0)
( k )

k

k

t
E t   

 





 
 

                                     (2.6) 
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Another well-known function is Miller-Ross function alike the Mittag-Leffler function is 

defined as: 

                                            , 1, 1
0

( ) t E ( )
( k 1)

k k

k

t
E t t




  











 
  

                                  (2.7) 

2.2.3 Riemann-Liouville derivatives  

Let us consider the Riemann-Liouville formula defined for the fractional integral as 

              

11
( ) ( ) ( )

( )

t
R

ta
a

f t f t f dI
   


 

                                           (2.8) 

where   is the order of integral at terminals  ,  a t of the function  f t [25]. 

 Extending the equation (2.8) for 0  , the expression for Riemann-Liouville 

(R-L) fractional order differ-integral modifies to: 

    
1

1 ( )
( )

(m ) ( )

tm
R

m mta
a

d f
f t d

dt tD







   

                    (2.9) 

where   is a fractional order of the differ-integral of a function  f t . For 

0, 1m m     where m  and for 0, 0.m    

 It is observed that, when 0  the result of the equation (2.9) is equal to the 

fractional order derivative, for 0  , it gives fractional order integral and for 0  it 

becomes the function itself. Thus, the above definition is known as a differ-integral, and 

the Riemann-Liouville (R-L) fractional order differ-integral is re-written as: 

  

1

1 ( )
, 1

(m ) ( )
( )

( )

tm

m m
R

a
ta m

m

d f
d m m

dt t
f t

d
f t m

dt

D





 

 



 


   

  
 


 



                (2.10)
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 The major property of ( )
R

ta
f tD


is the linearity for integer as well as fractional-

order differentiation. Other properties of this function are described in [3], [5], [125]. 

2.2.4 Caputo derivatives  

The fractional order about the initial conditions creates difficulty with exploitation of R-

L definition in realistic problems. Although, the initial values problem can be fruitfully 

resolved mathematically but the physical interpretation of these types of initial conditions 

is still unknown. Solution of this problem was presented by M. Caputo in 1966 [126].  

 Assuming that 0, ,t a   and , ,a t  , Caputo (C) definition for fractional 

order differ-integral is given as: 

   

1

1 ( )
, 1

(m ) ( )
( )

( )

t

m
C

a
ta m

m

f
d m m

t
f t

d
f t m

dt

D





 

 



 


   

  
 


 



             (2.11)
 

  Although, the Caputo operator ( )
C

ta
f tD


is linear but it offers more restriction for 

function ( )f t then the R-L definition. The Caputo definition can only be applied to the 

function ( )f t whose mth-order derivative is absolutely integrable. 

2.2.5 Left-sided Grunwald-Letnikov derivatives  

A varied form of formula for calculation of fractional order derivatives is presented by 

Grunwald and Letnikov using the derivative by limit. This definition is the generalization 

of backward difference for fractional order [5].  

 Consider a continuous-time function ( )y f t . Let the first-order derivative of 

( )f t is given as: 
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     0

( ) ( )
'( ) lim

h

df f t h f t
f t

dt h

 
                (2.12) 

Similarly, the second-order derivative can be written as: 

   

2 ' '
''

2 20 0

( ) ( ) ( 2 ) 2 ( ) ( )
( ) lim lim

h h

d f f t h f t f t h f t h f t
f t

dt h h 

     
    

Similarly, the formula for nth-order derivative can be written as: 

    
0

0

1
( ) lim ( 1) ( ),

n n
n r

n nh
r

nd f
f t f t rh

rd t h


 
    

 


 
  (n )  (2.13) 

 The equation (2.13) is the generalized form of non-integer order derivative known 

as Grunwald-Letnikov definition. The approximation of this derivative is widely used in 

computer applications. 

2.2.6 Properties of fractional order derivatives 

Some of the major properties of the fractional order derivative are as: 

 For any analytical function f (t) in t, its fractional derivative ( )
ta
f tD

  will also be an 

analytical function of z and a. 

 If α is an integer (i.e.� = �), the process ( )
ta
f tD

 gives the identical result as classical 

differentiation of integer order n. 

 For a = 0; the fractional order differ-integral operator ( ) ( )
ta
f t f tD


 . 

 Both the fractional differentiation and integration are linear operations: 

1 2 1 20 0 0
{k ( ) ( )} k ( ) k ( ).

t t t
f t k g t f t g tD D D

  
    

 The additive index law (semi-group property) 

0 0 0 0 0
( ) ( ) ( )

t t t t t
f t f t f tD D D D D

     
   

This condition holds under some logical constraints on the function f (t). 
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The fractional-order derivative can also adjust with the integer order derivative as: 

( )
( ( )) ( ) ,

n n
n

n nt t ta a a

d d f t
f t f t

d t d tD D D
    

  
 

 

in the clause t a , ( ) (a) 0,kf   ( 0,1, 2,........, 1).k n   

 In addition to the above discussion, many researchers have interpreted the 

fractional order integral and derivative in varied forms [4], [127]. 

2.2.7 Laplace transforms of fractional order operator 

The Laplace transform is widely used as integral transform in mathematics for many 

engineering applications. Laplace transform of a function ( )f t with real argument ( 0)t 

is represented by F(s) with complex arguments and given by the integral relation: 

      0

F(s) ( ) stf t e dt


                             (2.14) 

 For many practical applications the Laplace transform is bijective function and it 

is most useful property. Hence, the Laplace transform pose an important role in fractional 

order calculus [4]. Some of the repeatedly used Laplace transformations of fractional 

order operators are examined below.  

a) Laplace transformation of Riemann-Liouville integration. 

      
0

( ) ( )
t

L f t s F sI
   

 
               (2.15) 

b) Laplace transformation of Riemann-Liouville derivative. 

          

1
1

0 0
0

( ) ( ) (0)
m

kk

t t
k

L f t s F s s fD D
 


 



   
                  (2.16) 

where , 1m m     and m  . 

c) Laplace transformation of Caputo derivative 



23 
 

           

1
1

0
0

( ) (s) (0)
mC

k k

t
k

L f t s F s D fD
  


 



   
  

              (2.17) 

where , 1m m     and m  . 

 The detailed explanation and proof of equation (2.15), (2.16) and (2.17) is available 

in [4].  

2.3 Fractional-order systems and representation 

In control theory, a fractional order system is a dynamical system which is derived from 

the fractional differential equation having derivatives of non-integer order. These types 

of system are known as fractional dynamics and are described as fractional order 

derivatives and integrals. The main advantage of fractional derivatives is its capability of 

describing the memory and hereditary properties of various materials and processes 

which are negligible in usual integer-order models. The benefits of the fractional 

derivatives become clear in modeling many electrical and mechanical properties of actual 

materials. Moreover, Fractional order systems are also very helpful in studying the 

inconsistent actions of dynamical systems in all fields like; physics, biology, 

electrochemistry, viscoelasticity and many messy systems [125], [128], [129].  

The generalized equation of a continuous-time fractional order dynamic system is 

given as: 

     0 01 2 1 2......... .........
1 2 1 2, , ............, , u ,............, um m

l kH D y y y G D u            (2.18) 

where (.), (.)H G are combination laws of fractional order derivative operator and ,k lu y

are time dependent function of input and output.  

For continuous-time linear time-invariant single input single output system, the 

equation is written as: 
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   0 01 2 1 2......... .........( ) ( )m mH D y t G D u t                     (2.19) 

with    0 01 2 1 2......... .........

0 0

;m m

n m
k k

k k
k k

H D a D G D b D       

 

   where ,k ka b  . 

Hence, (2.19) can be explicitly written as: 

   1 0 1 0

1 0 1 0( .......... ) ( ) (b .......... ) ( )n n n n

n n m na D a D a D y t D b D b D u t      

         (2.20) 

In equation (2.20), if all the orders of derivation are integer multiples of a base 

order i.e. , ,k k k       then this type system is known as commensurate-order 

system and equation (2.20) is: 

 
0 0

( ) ( )
n m

k k
k k

k k

a D y t b D u t 

 

                  (2.21) 

Briefly, the continuous time linear time-invariant systems are classified as: 

Rational
Commensurate

Non- integer(fractional) Irrational
LTISystems

Non-Commensurate

Integer

  
  
  
 





 

The transfer function, stability and other aspects of continuous time fractional 

order system is described in following subsections. 

2.3.1 Transfer function of fractional order models 

The generalized fractional order transfer function is defined as the ratio of Laplace 

transform of input and the output with zero initial conditions and is written as: 

           
1 0

1 0

1 0

1 0

.........( )
( )

( ) ..............

m m

n n

m m

n n

b s b s b sY s
G s

U s a s a s a s

  

  









  
 

  
              (2.22) 
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where U( )s and ( )Y s are the Laplace transform of input and output respectively. In 

addition to this, all initial conditions are assumed to be zero i.e. u(0) 0, y(0) 0   and

,m n  . 

 Suppose, the system is a commensurate order system then the fractional order 

transfer function is written as: 

                          

 

 
0

0

( )

m k

k
k

n k

k
k

b s

G s

a s













                (2.23) 

 On the basis of order of the system, the LTI systems can be classified as integer 

order systems or fractional order systems. The Fractional order systems are further 

categorized into two parts; commensurate and non-commensurate order systems. In 

commensurate order systems the fractional powers are integer multiples of a fractional 

number whereas, in non-commensurate order systems no such generalization occurs. 

2.3.2 State-space representation of fractional order system 

The state-space representation of a linear continuous time fractional order system is 

presented by Grunwald-Letnikov and given as:  

    
( ) ( ) ( )

ta
x t Ex t Fu tD


                             (2.24) 

    ( ) ( )y Gx t Hu t                      (2.25) 

where is the order of differential equation, , , ,n n n m p n p mE F G H      

are the constant matrices, p is number of inputs, m is number of outputs, n is number of 

state equations [12]. 
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2.3.3 Stability of fractional order system 

Stability is a common topic of discussion for any dynamical system and its behavior. In 

mathematical terminology, stability theory locates the convergence of solutions of 

differential or difference equations of dynamical systems under specified initial 

conditions. In a similar manner, the researchers have given much focus on the stability 

and stabilization of the system represented by fractional order differential equations. In 

general control theory, it is well defined that a linear time-invariant system will be stable 

if and only if the roots of its characteristic equation lie on the left half of the s-plane. In 

another word, the roots of the characteristics polynomial must have negative real part. 

But in case of fractional-order LTI system, the stability is defined in a different manner 

discussed in [4]. It is fascinating that a fractional system having roots in the right half of 

s-plane may be stable and roots in the left half plane may be unstable. Stability of the 

FOS is discussed by I. Petras [130] which is based on Riemann surface. The behavior and 

stability of the FOS is presented in the form of power law which also shows the long-

term memory on FOS. Here, the stability region of a fractional order system represented 

by s is discussed. 

 Consider the Laplace transform of fractional order differential equation in equation 

(2.24); be given as: 

            X(s) X(s) (s)s E FU                  (2.26) 

Then, the system transfer function is: 

               
( )

( )
U( )

X s F
G s

s s E
 


                      (2.27) 

Performing the conformal transformation of � as 
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          s                   (2.28) 

The equation (2.27) is re-written as: 

             
( )

F
G s

E



                (2.29) 

 Using this transformation, the poles of  -plane will be analyzed. Once the time 

domain responses corresponding to the location of new  -plane poles are found, their 

performance in new  -plane can be easily described. 

 For this, the s-plane is mapped along with the time-domain function properties of 

each point, into the  -plane. For ease of the engineers it is assumed that 0 1  . Then 

equation (2.28) is written as: 

     
 j js re r e

                       (2.30) 

 For stability, it is compulsory to map the imaginary axis 2js re  . So the mapping 

of the axis in  -plane is: 

       
2

j

r e





                    (2.31) 

which represents a pair of lines at 
2


   , where  is the angle in  -plane. 

 Here, the right half side of the s-plane is mapped into a segment in the  -plane of 

angle less than 
2


 degrees. Similarly, a different situation may be analyzed in the case 

of1 2  . Both the cases are shown in figure 2.1. 



28 
 

 

Fig. 2.1. Stability region of the fractional order system 

 In addition to the above elaboration of stability for fractional order system, a lot 

more types of stability are discussed in review papers published by M. Riveroetal [22], 

[23], [124], [131]. 

2.3.4 Time and frequency domain analysis 

One of the major difficulties while working with the fractional order systems is its time 

and frequency domain analysis. Exact analytical solution for these problems is not 

possible. However, there is no universal method for time and frequency domain analysis. 

Most of the researchers use the approximation techniques to convert the fractional order 

system into an integer order. In this subsection, method for calculation of transient and 

frequency domains response is illustrated. 

2.3.4.1 Transient response 

Analytical method is used to determine the time-domain response. The transient response 

is only depends upon the roots of the characteristics equation and there are six different 

case for considering this [73]: 

i. The response will be monotonically decreasing function if no root lies in the 

Riemann principal sheet. 
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ii. If the roots lie in the Riemann principal sheet and their co-ordinates are

( ) 0,I(s) 0s   ; then the response will also be a monotonically decreasing 

function. 

iii. If the roots in the Riemann principal sheet and ( ) 0,I(s) 0s   , then the 

response will be a damped oscillations. 

iv. If the roots in the Riemann principal sheet and ( ) 0,I(s) 0s   , then the 

response will be an oscillations with constant amplitude. 

v. If the roots in the Riemann principal sheet and ( ) 0,I(s) 0s   , then the 

response will be an oscillations with increasing amplitude. 

vi. If the roots in the Riemann principal sheet and ( ) 0,I(s) 0s   , then the 

response will be a monotonically increasing function. 

For a specific case of commensurate-order systems, the impulse response is 

calculated by: 

                         

1 1 10
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0

{H( }, s

m
k

k n
k k

n
k k k

k
k

a
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L L L
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 
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  
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 
    

     
  

  





              

(2.32) 

In general form, 

        1 1
, ( )k

k

s
L t E t

s

 
 

 





  

 
 

                   (2.33) 

For calculation of impulse response ( )g t , put  in equation (2.33) that result in: 

      

1
,

0

( ) ( )
n

k k
k

g t r t E t 
  





 
   

(2.34) 
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And the step response is given by: 

      
 

1
1

0

(t)
n

k

k k

r s
y L

s 






  
  

  


              

(2.35) 

The different conditions for nature of response are:  

i. Monotonically falling if arg( ) .k   

ii. Oscillatory with falling amplitude if arg( ) .
2

k


    

iii. Oscillatory with unvarying amplitude if arg( ) .
2

k


   

iv. Oscillatory with growing amplitude if arg( ) , arg( ) 0.
2

k k


    

v. Monotonically growing if arg( ) 0.k   

Time domain response corresponding to the five cases is shown in Figure 2.2. 

2.3.4.2 Frequency Domain Response 

The frequency response of fractional order transfer function is directly evaluated along 

the imaginary axis by substituting s j , where (0, )  [73]. However, frequency 

response of commensurate order fractional systems is analyzed by obtaining its Bode 

plots. Hence, the frequency response of any fractional order system is obtained by 

factorizing the system transfer function and adding the individual contributions of the 

terms having fractional power . The other way for frequency response analysis of 

fractional order system is to approximate it in integer order but may not show exact 

response of the system. The detail analysis of different approximation algorithms are 

discussed in the next section. 
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Fig. 2.2. Location of Roots and the corresponding time-domain responses of 

fractional order system 
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2.3.4.3 Steady-state Response 

The time-domain analysis of any system is incomplete without knowing the steady-state 

behavior of the systems. In this subsection, the standard definition of steady state error 

coefficients of different type of fractional order system is stated. From the literature, the 

standard definition of steady state error coefficients for integer order system is;  

i. Position error coefficient 

       0
lim ( )p
s

K G s



               

(2.36) 

ii. Velocity error coefficient 

       0
lim ( )v
s

K sG s



              

(2.37) 

iii. Acceleration error coefficient 

       

2

0
lim ( )a
s

K s G s



   

(2.38) 

Now, consider a generalized form of a fractional order system given by the 

transfer function: 

 
 

1 0

1 0

1 0

1 0
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Then, the modified standard definition of steady state error coefficients for 

fractional order system is given by following relations: 
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Table 2.1 Steady-state errors and steady-state error coefficients 

S.N. Steady state (Integer order system) Steady state(Fractional order system) 

1   ,p pK e  ,v vK e  ,a aK e  Type   ,p pK e  ,v vK e  ,a aK e  Type 

2 0 , (1 )K K K  0,∞ 0,∞ 0 (0,1) ∞,0 0,∞ 0,∞ 0 1 

3 1 ∞,0 ,1K K  0,∞ 1 (1,2) ∞,0 ∞,0 0,∞ 1 2  

4 2 ∞,0 ∞,0 ,1K K  2 (2,3) ∞,0 ∞,0 ∞,0 2 3  

 

The steady-state errors and steady-state error coefficients for both the integer and 

fractional order systems for different values of  are summarized in Table 2.1 that 

notifies about the steady-state error coefficients of fractional order system to be either 0 

or ∞. Thus, the fractional and integer order systems are analogous in terms of their 

performance stated by steady state error and coefficients. 

2.4 Approximation of Fractional Order Operators 

In common practice the control system may have either the fractional order dynamic 

system (i.e. the fractional order plant) to control or the fractional-order controller or both. 

However, implementation of fractional order controller is common because mathematical 

model of the plant may has obtained using classical sense and has integer order. The 

fractional order PID controller involves the fractional-order differentiation and 

integration which offers additional efficiency and robustness to control integer order as 

well as fractional-order dynamical systems.  

 The main problem with the fractional order system or controller occurs for its 

digital implementation. Here approximation of fractional terms into an integer order 

model by preserving same properties in a suitable frequency range is needed. Many 
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techniques are available in continuous-time and discrete time domain, using transfer 

function as well as the state space representation [132]. Two of the commonly used 

approximation algorithms are listed below: 

1) Approximations using continued fraction expansions and interpolation 

techniques. 

Continued fraction expansion (CFE) is well known technique for estimation of functions 

which converges much rapidly than power series expansions in larger domain of the 

complex plane. There are three major techniques which are based on this approximation: 

a) General CFE method for approximation of fractional integro-differential 

operators. 

b) Carlson's method. 

c) Matsuda's method. 

2) Approximations using curve fitting or identification techniques.  

The three fundamental approximation techniques based on curve fitting technique that 

are common in practice. 

a) Oustaloup Recursive Approximations. 

b) Modified Oustaloup Approximations. 

c) Chareff's method. 

 The Oustaloup Recursive Approximations is used in this work and is discussed 

further.  

2.4.1 Oustaloup recursive approximations 

The Oustaloup approximation[1], [47], [133] is widely used for integer order 

approximation where a frequency band of interest is considered. Suppose b h[ , ]  is the 

frequency range to be fit. Then the term s/ω� is substituted with: 



35 
 

      0

1

1

b

h

s
w

C
s

w




                                      (2.43) 

where b hw w w  and 0
b

b

h

ww
C w

w w





  . 

The technique is implemented for approximation of a function in a particular form 

( ) ,H s s where .   

 The Oustaloup’s approximation model to a fractional order differentiator s is 

written as: 

      
0

1 '
( ) ( )

1

N
k

I
k N k

s
G s C

s
 







                             (2.44) 
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 are the zeros and poles of rank k  

respectively and (2 1)N   is the total number of zeros or poles. 

Matlab function for Oustaloup’s approximation is given as ousta_fod() and defined as: 

function G=ousta_fod(gam,N,wb,wh) 

k=1:N;  

wu=sqrt(wh/wb); 

wkp=wb*wu.^((2*k-1-gam)/N);  

wk=wb*wu.^((2*k-1+gam)/N); 

G=zpk(-wkp,-wk,wh^gam);  

G=tf(G); 

where gam is order of derivative, N is order of the filter, (wb,wh) is desired frequency 

range [47]. 
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 In the case of FOTF with multiple fractional powered terms, each fractional term 

is approximated individually and combined to obtain the final approximant. 

2.4.2 Modified Oustaloup’s filter 

In many practical applications it is found that the Oustaloup approximation does not 

provide exactly fit function in the entire frequency range of interest b h[ , ]  . Here a 

modified version of the Oustaloup recursive filter is proposed for fractional-order 

derivative. That performs better than the previous version for all the systems. The 

modified Oustaloup’s approximation model for a fractional order differentiator s is given 

as: 
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(2.45) 

The above modified filter is stable for (0,1) . Numerous experimental studies 

and theoretical analysis suggest the numerical values of 10b  and 9d  to achieve 

excellent approximation.   

The MATLAB function for this algorithm is given as newfod() and defined as[47]: 

function G=new_fod(r,N,wb,wh,b,d) 

if nargin==4,  

b=10; d=9; end 

k=1:N;  

wu=sqrt(wh/wb);  

K=(d*wh/b)^r; 

wkp=wb*wu.^((2*k-1-r)/N);  

wk=wb*wu.^((2*k-1+r)/N); 

G=zpk(-wkp’,-wk’,K)*tf([d,b*wh,0],[d*(1-r),b*wh,d*r]); 
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2.5 Fractional Order Control 

Various practical dynamical systems are better characterized using fractional order 

dynamic models. These non-integer dynamic models are based on fractional calculus or 

fractional order differentiation or integration. Fractional calculus has incredible potential 

to enhance the way we think, perceive, model, and control the natural things around us. 

Refusing the benefits of fractional calculus is like denying from the existence of zero, 

fractional, or irrational numbers. Although, the fractional calculus was being extensively 

used for modeling and analysis purposes till the mid of twentieth century but still 

researchers face various problems in implementation of fractional calculus for control 

application. A major problem in designing a fractional controller is the frequency 

characteristics of the system. Frequency characteristic is advantageous in terms of 

robustness of any system to change in change system parameter or any uncertainty.  

Manabe [21] pioneered the work in this direction in 1961. He suggested that the 

fractional integrator can be used as a substitute for control purpose and presented the 

frequency and transient response of fractional-order integral and its application to control 

systems [42], [43], [134]. Later on interest of researchers towards designing the fractional 

order controller increased and many research papers were published in design and 

implementation of fractional order controller [124], [135]. Different types of fractional 

order control strategies like; optimal control [75], [136], nonlinear fractional order 

controller [79], [137], fractional order sliding mode control [4], [81] etc. are presented for 

integer as well as fractional order dynamic systems [124], [135].  Different forms of 

fractional controller proposed in the literature has been shown in Table 1 in previous 

chapter. Among all, the fractional order PID controller is the most powerful, flexible, 

robust and frequently used for any system. 
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2.5.1 Fractional order PID controller 

The fractional order PID controller was initially developed by A. Oustaloup in the form 

of CRONE (Commande Robuste d’Ordre Non-Entier, meaning Non-integer-order Robust 

Control) controller  [138]. He applied this CRONE controller in different areas of control 

application and established the superior performance of FOPID controller over the 

conventional PID controller. He also presented three difference generations of CRONE 

control techniques in 1993 [6], [7], [46]. A generalized form of fractional order PID 

controller is presented by Podlubny in 1994 which is also known as PI D  controller[47]. 

In this sequence, Podlubny presented many research papers related to different 

applications of fractional order differentiation, integration and PI D  controller [3], [48]–

[51].  

 In addition to this, various techniques are available for designing the FOPID 

controller [74-77]. The FOPID controller is found better for many practical systems like 

unmanned aerial vehicle (UAV) in [54], velocity control of servo motor, control of DC-

motor with elastic shaft, terminal voltage control of the automatic voltage regulator and 

many more [9], [50], [55]–[61], [63]–[71], [140]. 

2.5.2 Transfer function of FOPID controller 

FOPID controller is the generalized form of conventional PID controller and represented 

as PI�D� [3]. The fractional order control action in the form of integro-differential 

equation is given by: 

( ) ( ) ( ) ( )p i du t K e t K D e t K D e t      , 0  
 (2.46) 

By applying Laplace transform in the above equation one can easily calculate the 

transfer function of the FOPID controller as: 
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where for λ and µ are the fractional power of integral and differential control respectively. 

All the classical controllers can be realized with a different set of values of λ and µ in 

FOPID controller which is shown below. 
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     (2.48) 

This can also be realized in a two-dimensional plane depicted in Figure 2.3[4]. 

 

Fig. 2.3. The plane of FOPID controller 

 The fractional order controller provides more flexibility in tuning the gain and 

phase characteristics of the system. This flexibility is due to the presence of two additional 

tuning knobs as compare to the conventional PID controller i.e. fractional power of 

differential ( ) and integral ( ) . These additional tuning knobs are very useful for getting 

better controller which enhances the stability and robustness of the system.  A generalized 

form of closed-loop system with FOPID controller has been shown in Figure 2.4.  
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Fig. 2.4. Generalized form of closed-loop system with FOPID controller 

2.5.3 Advantages of FOPID controller over conventional PID controller 

In most of the control application, the FOPID controller is found better than the traditional 

PID controller. Some advantages are listed below: 

 There are five different tuning knobs available in FOPID controller which 

provides better tuning than the traditional PID controller. 

 It is effortless to achieve the iso-damping property from FOPID controller than 

the conventional PID controller. 

 The FOPID controller performs better than the convention PID controller in case 

of a system with long time delay. [108], [120]. 

 In case of higher order systems, the conventional PID controller does not perform 

well, whereas the FOPID controller provides superior results [115], [141] 

 FOPID controller is more robust and stable than the conventional PID controller 

[66], [101], [142]. 

 FOPID controller is also able to control the system with nonlinearities which are 

tough task with the conventional PID controller [86], [87]. 

 FOPID controller attains better results for nonminimum phase system. 

2.5.4 Complexity with FOPID controller design 

In spite of having numerous advantages over conventional PID controller, the researchers 

have to face two major difficulties while designing the FOPID controller which are: 
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 Digital implementation of FOPID controller 

 Measuring the optimum values of controller parameters in minimum time. 

 In earlier discussion, many approximation techniques are pointed out for 

approximation of fractional terms into integer order model that solve the problem of 

digital implementation of FOPID controller. 

 Reason for second complexity in FOPID controller is the presence of total five 

control parameters (i.e. two extra tuning knobs as compare to conventional PID); so, 

measuring the optimum values of all five controller parameters simultaneously in 

minimum time becomes a difficult job. To rectify the complexity about the five tuning 

knobs, there are many techniques available which will be discussed in detail in next 

section. 

2.6 Optimization techniques of FOPID controller 

As it is earlier mentioned that the FOPID controller has two addition tuning knobs than 

the conventional PID controller. Hence, it is tough to tune FOPID controller [104], [140], 

[143]. There are many tuning strategies like; Ziegler-Nichols based tuning method, 

particle swarm optimization, Genetic algorithm, neural network, etc.[58], [92], [94], 

[140], [144]–[149], are available to fine tune the parameters of FOPID controller. These 

tuning methods can be broadly classified into three different categories namely Rule-

based methods, Analytical methods and Numerical methods. Different standard fitness 

function has been used for optimization of controller parameters in the various techniques 

present in the literature. A brief survey of these techniques has been presented in Chapter 

1.  
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2.7 Fitness Function 

The prime task of any optimization technique is to find the values of the variables having 

optimum value of the fitness or objective function. The fitness function indicates how 

much each variable contributes to the value of fitness function to be optimum for the 

problem. Depending upon the desire of the researcher different fitness or objective 

function are considered for the same problem. Different types of fitness function 

considered in this work are discussed below: 

2.7.1 Integral absolute error 

    
0

| ( ) |
T

IAE e t dt                  (2.49) 

2.7.2 Integral time-weighted absolute error 
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2.7.3 Integral squared error 
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2.7.4 Integral time-weighted squared error 

  2

0
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T
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where �(�) is the error, � is the time period, and � is total simulation time. Here 

error �(�) at time � is calculated as: 

                    ( ) 1 C t
e t step G                                                    (2.53) 

where CG is the transfer function of the system with controller.  
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2.8 Fractional order toolbox in MATLAB 

The fractional calculus is extensively used in research in various engineering disciplines, 

demanding a Sharp tools for modeling, simulations, analysis and implementation of 

fractional order systems and control. These tools are very essential for the computation 

of fractional integration/differentiation, approximation of fractional terms, and simulation 

of the fractional order systems and controllers. Many tools and functions are available in 

literature as listed in Table 2.2, which are helpful for working in fractional domain. 

Table 2.2 List of tools and software for fractional order calculus and control 

application. 

Sl. 

No. 

Matlab 

Toolbox and 

functions 

Author Remark 

1 CRONE A. Oustaloup et al. 
First Toolbox for non-integer control 

and identification [150]–[152] 

2 NINTEGER D.Valerio and J. Costa GUI for Controller Design [153], [154] 

3 FOMCON A.Tepljakov et al. 

Helpful for beginners in fractional 

order modelling and control [114], 

[124] 

4 fopid N. Lachhab et al. Not Available for download [124] 

5 fotf Xue et al. Overload many functions [124] 

6 

Sysquake 

interactive 

software tool 

E. Pisoni et al. 
Analysis and design of fractional PID 

Controller [6], [124] 

7 M-L functions R. L. Magin 

MATLAB functions developed for 

numerically computing the Mittag-

Leffler function [124] 

8 NILT Lubomir 
Numerical Inversion of Laplace 

Transform [124] 
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9 dfod I. Petras 

Approximation of fractional order 

differentiators and integrators in 

discrete domain [124] 

10 IRID Chen, Li, Sheng et al. 
Approximation of different type of 

fractional functions and filters [124] 

11 fderiv F. M. bayat 

Fractional derivative of order α for the 

given function using Grunwald-

Letnikov (G-L) definition [9], [124] 

12 glfdiff Xue et al. 

Calculation the αth derivative of a 

given function using G-L definition 

[124] 

13 fit T. M. Marinov et al. 

Numerical computation of fractional 

order integration and differentiation 

using Riemann-Liouville definition 

[124] 

14 DFOC I. Petras 
Digital version of FOPID controller 

[59], [124], [155] 

15 
Sysquake FO 

PID 
Pisoni et al. 

The only toolbox in Sysquake software 

environment [59], [74], [123], [124] 

16 FOCP Tricaud et al. 

Formulation of the Fractional Optimal 

Control Problems (FOCP) into integer 

order format using a rational 

approximation of the fractional 

derivative [15]  

17 FSST D. Sierociuk 
A simulation toolkit for the fractional 

order discrete state-space system  [84] 

 

 The detail investigation about the tool for fractional calculus and control is present 

in many review articles [74], [124], [135]. As detail description of all the toolboxes and 

software is not possible here, only the FOMCON Toolbox used in this work is illustrated 

in next subsection. 
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2.8.1 FOMCON toolbox in MATLAB 

As the name suggest, it is a fractional-order system modeling and control (FOMCON) 

toolbox for MATLAB platform developed by A. Tepljakov et al. in 2011. The core of the 

toolbox is derived from an existing mini toolbox FOTF  (“Fractional-order  Transfer  

Functions”),  the  source  code  for  which  is  provided  in literature [57], [139], [156], 

[157]. It is also connected to other existing fractional calculus based toolboxes, like 

CRONE [152] and Ninteger [154], and this relation is shown in Figure 2.5. 

 

Fig. 2.5. Fractional-calculus based toolbox relations 

  FOMCON provides very useful and convenient tools for the researchers working 

with fractional order system and control [114], [158]. In addition, it also provides 

convenient functions, e.g. the polynomial string parser, building graphical user interfaces 

(GUIs) to improve the general workflow. There are certain limitations in the existing 

toolboxes. Thus, the basic practicality of the toolbox is extended with advanced features, 

such as fractional-order system identification and PI D  design. The availability of 

graphical user interfaces and advanced functionalities, makes it suitable for both 
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beginners and the expert. Due to the availability of the source code the FOMCON toolbox 

is ported to other computational platforms such as Scilab or Octave with fewer limitations 

and/or restrictions. An overview of the basic structure of the toolbox is presented in the 

following subsection. 

 The key features which make the toolbox most popular among the researchers are 

given as: 

 Extremely appropriate for the beginners in fractional control. 

 It contains features of almost all the basic toolbox for fractional order control. 

 Has the capability to generate accurate and quick practical results. 

 It provides a set of tools and commons for researchers in the fractional-order 

control field. 

 Provides many graphical user interfaces (GUIs) for fractional order model 

identification and fractional PID controller design and optimization. 

 Also, provides a Simulink blockset for fractional order controller. 

 Digital implementation of fractional order controller is also possible with this 

toolbox. 

2.8.1.1 Toolbox structure 

The toolbox pose a modular structure and currently consists of the following modules: 

 Main module ( for fractional order system analysis) 

 Identification module (for fractional order system identification in both time and 

frequency domains) 

 Control module (for FOPID design, tuning, optimization tools and some additional 

features). 
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All these modules are interconnected and can be accessed through GUIs as shown in 

Figure 2.6. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.6. FOMCON toolbox module overview 

2.8.1.2 GUIs 

Many graphical user interfaces (GUIs) are available in FOMCON toolbox. Few of them 

are frequently used for system identification and controller optimization:  

i. fotfid (used for time-domain identification tool for fractional order system shown 

in Figure 2.7) 

ii. iopid_tune (used for integer order PID tuning for a fractional order system shown 

in Figure 2.8) 

  

Core Module (FOTF Analysis) 

(fotf_gui) 

Identification 

Time-Domain  
(fotfid) 

Integer Order 
(iopid_tune) 

Fractional Order 
(fpid_optim) 

Control 

Frequency-Domain 
(fotfrid) 

FOPID Design 
(fpid) 

Tuning 
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Fig. 2.7. GUI for fotfid 

 

Fig. 2.8. GUI for iopid_tune  
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iii. fpid_optim (used for optimization of FOPID controller for both integer order as 

well as fractional order system shown in Figure 2.9) 

 

Fig. 2.9. GUI fot pid_optim  

2.8.1.3 Simulink block 

The FOMCON toolbox is also offered with a Simulink blockset which assist the 

researchers to perform complex modeling tasks. The conventional approach is used for 

block construction where it is needed. The Simulink blocks which can be currently realize 

in FOMCON toolbox are listed below and also shown in Figure 2.10. 

 General fractional-order operator 

 Fractional order integrator and differentiator 

 Fractional order transfer function (Continuous and Discrete both) 

 PI D  controller (Continuous and Discrete both) 

 TID controller 



50 
 

 

Fig. 2.10. Simulation Blocks available in FOMCON toolbox 

2.8.1.4 Dependency on other toolboxes 

Although, the FOMCON relies on the MATLAB platform as a very useful toolbox for 

the researchers, but it also depends on other MATLAB products to provide such advanced 

features. Few of them are as below; 

 Control System toolbox (Essential requirement for most of the features) 

 Optimization toolbox (Required for time-domain identification, integer-order PID 

tuning as well as in a part of fractional-order PID tuning) 

 optimize() function [6]; 

 Various Ninteger toolbox (For frequency domain identification functions) 

 Various other tools are directly used as per the BSD license. 

 It is also possible to export fractional-order systems to the CRONE toolbox format 

but installation of the object-oriented CRONE toolbox is needed to avail this 

feature. 
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2.8.1.5 Availability of the toolbox 

This toolbox is freely downloaded from the link http://fomcon.net/fomcon-

toolbox/download/. More truthful discussion and solution of the questions raised by the 

users are also entertained online. 

2.9 Summery 

The main focus of this chapter was to discuss about the essential preliminaries for this 

dissertation. The chapter enlighten about the representation, stability, approximation of 

fractional order systems and various advantages of fractional order system and control. 

In addition to this, various fractional order control schemes available in the literature and 

MATLAB toolbox used for this dissertation are also covered. Based on these 

preliminaries and basic knowledge of fractional calculus and fractional order control, the 

proposed tuning algorithms for this dissertation will be discussed in the next chapter. 


