LIST OF FIGURES

Fig. 1. 1: Comparison of capabilities of different alloy systems
Fig. 1. 2: Schematic representation of marine gas turbine engine
Fig. 1. 3: Principle of ultrasonic shot peening
Fig. 2. 1: Components of ultrasonic shot peening device: (a) The peening head and
(b) the central unit of the ultrasonic shot peening device
Fig. 2. 2: Salt coating set-up: (a) Air brush (Model-BD203) and (b) hot plate for salt
coating
Fig. 2. 3: (a) Hour glass geometry of HCF test specimen for R=-1, (b) Digital photographs
of salt deposition system in central region of the curved section35
Fig. 2. 4: Geometry of HCF test specimen used at stress ratio of 0.5 and 0.7
Fig. 2. 5: 50 kN Servo material testing system
Fig. 3. 1: Microstructure of the peak aged superalloy IN718 (a) optical micrograpph,
(b) SEM micrograph and (c) TEM micrograph43
Fig. 3. 2: Bright field TEM micrograph and the corresponding SAD pattern of the
superalloy IN718 subjected to ultrasonic shot peening for 5 min44
Fig. 3. 3: Effect of surface roughness on: (a) dislocation density and
(b) microhardness
Fig. 3. 4: X-ray diffraction of un-shot peened and ultrasonic shot peened
superalloy IN718
Fig. 3. 5: Digital photographs of the #400 grit ground samples oxidized/hot corroded at
600°C for 0.5 h (a-d) and 100 h (e-h)

Fig. 3. 6: Effect of surface roughness on corrosion behavior of the specimens coated with
1S salt and exposed at 600°C up to 100 h: (a) Weight gain per unit area vs time;
(b) square of weight gain per unit area vs time
Fig. 3. 7: Effect of surface roughness on corrosion behavior of the specimens coated with
2SM salt mixture and exposed at 600°C up to 100 h: (a) Weight gain per unit area vs
time; (b) square of weight gain per unit area vs time
Fig. 3. 8: Effect of surface roughness on corrosion behavior of the specimens coated with
3SM salt mixture and exposed at 600°C up to 100 h: (a) Weight gain per unit area vs
time; (b) square of weight gain per unit area vs time
Fig. 3. 9: SEM micrographs showing the effect of different surface roughness on the
depth of penetration of corrodants in the samples coated with 1S salt and exposed at
600°C for 100 h: (a) #400, (b) #600, (c) #800 and (d) #1000
Fig. 3. 10: SEM micrographs showing the effect of surface roughness on the depth of
penetration of corrodants in the samples coated with 2SM salt and exposed at 600°C for
100 h: (a) #400, (b) #600, (c) #800 and (d) #1000 53
Fig. 3. 11: SEM micrographs showing the effect of surface roughness on the depth of
penetration of corrodants in the samples coated with 3SM salt and exposed at 600°C for
100 h: (a) #400, (b) #600, (c) #800 and (d) #1000
Fig. 3. 12: X-ray diffraction patterns of the uncoated sample and those coated with
different salt/salt mixtures exposed at 600°C, up to 100 h: (a) uncoated, (b) coated with
1S salt (100 wt% NaCl), (c) coated with salt mixture 2SM (60 wt% Na ₂ SO ₄ + 40 wt%
$V_2O_5)$ and (d) coated with salt mixture 3SM (75 wt% $Na_2SO_4 + 15$ wt% $NaCl + 10$ wt%
V ₂ O ₅)

Fig. 3. 13: SEM micrograph showing morphology of the 1S salt coated sample
exposed at 600°C for 100 h. The EDS analysis shows concentration of the different
elements
Fig. 3. 14: SEM micrograph showing morphology of the sample coated with salt mixture
2SM and exposed at 600°C for 100 h. The EDS analysis shows concentration of the
different elements
Fig. 3. 15: SEM micrograph showing morphology of the sample coated with salt mixture
3SM and exposed at 600°C for 100 h. The EDS analysis shows concentration of the
different elements
Fig. 3. 16: Elemental distribution in cross section of the specimen ground with #400,
up to the depth of 40 μ m from the surface, coated with 1S salt and exposed at 600°C for
100 h
Fig. 3. 17: EPMA/SE X-ray mapping of cross section of the 1S salt coated sample
exposed at 600°C up to 100 h, showing distribution of different elements: (a) Nickel,
(b) Iron, (c) Chromium and (d) Oxygen60
Fig. 3. 18: Elemental distribution in cross section of the specimen ground with #400,
up to the depth of 40 μ m from the surface, coated with 2SM salt mixture and exposed
at 600°C for 100 h61
Fig. 3. 19: EPMA/SE X-ray mapping of cross section of the specimen coated with salt
mixture 2SM and exposed at 600°C for 100 h, showing distribution of different elements:
(a) Nickel, (b) Iron, (c) Chromium and (d) Oxygen61
Fig. 3. 20: Elemental distribution in cross section of the specimen ground with #400, up
to the depth of 40 μ m from the surface, coated with 3SM salt mixture and exposed at
600°C for 100 h

Fig. 3. 21: EPMA/SE X-ray mapping of cross section of the specimen coated with salt
mixture 3SM and exposed at 600°C for 100 h, showing distribution of different elements:
(a) Nickel, (b) Iron, (c) Chromium and (d) Oxygen
Fig. 3. 22: Effect of ultrasonic shot peening for 5 min on hot corrosion resistance of the
specimens coated with 1S exposed at 600° C, up to 100 h: (a) Weight gain per unit area
vs time; (b) Square of weight gain per unit area vs time
Fig. 3. 23: Effect of ultrasonic shot peening for 5 min on hot corrosion resistance of the
specimens coated with 2SM exposed at 600°C, up to 100 h: (a) Weight gain per unit area
vs time; (b) Square of weight gain per unit area vs time
Fig. 3. 24: Effect of ultrasonic shot peening for 5 min on hot corrosion resistance of the
specimens coated with 3SM exposed at 600°C, up to 100 h: (a) Weight gain per unit area
vs time; (b) Square of weight gain per unit area vs time
Fig. 3. 25: EPMA/SE X-ray mapping of cross sections of specimens coated with salt 1S
and exposed at 600°C for 100 h, showing distribution of different elements: Nickel,
Chromium, Iron and Oxygen for (a) non shot peened sample and (b) 5 min USP treated
sample
Fig. 3. 26: EPMA/SE X-ray mapping of cross sections of specimens coated with salt
mixture 2SM and exposed at 600°C for 100 h, showing distribution of different elements:
Nickel, Chromium, Iron and Oxygen for (a) non shot peened sample and (b) 5 min USP
treated sample
Fig. 3. 27: EPMA/SE X-ray mapping of cross sections of specimens coated with salt
mixture 3SM and exposed at 600°C for 100 h, showing distribution of different elements:
Nickel, Chromium, Iron and Oxygen for (a) non shot peened sample and (b) 5 min USP

Fig. 3. 28: Schematic presentation showing the process of corrosion on the specimen
with coarse surface, coated with 1S salt (100 wt% NaCl), and exposed at 600°C up to
100 h 71
Fig. 4. 1: Digital photographs of the #400 grit ground samples oxidized/hot corroded at
600°C for 0.5 h (a-d) and 100 h (e-h)79
Fig. 4. 2: Effect of surface roughness on corrosion behavior of the specimens coated with
1S salt and exposed at 700°C up to 100 h: (a) Weight gain per unit area vs time;
(b) Square of weight gain per unit area vs time
Fig. 4. 3: Effect of surface roughness on corrosion behavior of the specimens coated with
2SM salt mixture and exposed at 700°C up to 100 h: (a) Weight gain per unit area vs
time; (b) Square of weight gain per unit area vs time
Fig. 4. 4: Effect of surface roughness on corrosion behavior of the specimens coated with
3SM salt mixture and exposed at 700°C up to 100 h: (a) Weight gain per unit area vs
time; (b) Square of weight gain per unit area vs time
Fig. 4. 5: Comparison of weight gain/area vs time of exposure at 600 and 700°C for
different salt/salt mixture coatings
Fig. 4. 6: X-ray diffraction patterns of the un-shotpeened and 5 min ultra sonic shot
peened samples coated with 2SM salt mixture and exposed at 700°C up to 100 h85
Fig. 4. 7: SEM micrographs showing the effect of surface roughness on the depth of
penetration of corrosion products in the samples coated with salt mixture 2SM and
exposed at 700°C for 100 h: : (a) #400, (b) #600, (c) #800 and (d) #1000
Fig. 4. 8: Effect of ultrasonic shot peening for 5 min on hot corrosion resistance of the
specimens coated with 1S and exposed at 700°C up to 100 h: (a) Weight gain per unit
area vs time; (b) Square of weight gain per unit area vs time

Fig. 4. 9: Effect of ultrasonic shot peening for 5 min on hot corrosion resistance of the
specimens coated with 2SM and exposed at 700°C up to 100 h: (a) Weight gain per unit
area vs time; (b) Square of weight gain per unit area vs time
Fig. 4. 10: Effect of ultrasonic shot peening for 5 min on hot corrosion resistance of the
specimens coated with 3SM and exposed at 700°C up to 100 h: (a) Weight gain per unit
area vs time; (b) Square of weight gain per unit area vs time
Fig. 4. 11: SEM micrographs showing the comparison of the depth of penetration of
corrosion products in the samples coated with salt mixture 2SM and exposed at700°C for
100 h (a) non-USP and (b) 5 min USP treated
Fig. 4. 12: EPMA/SE X-ray mapping of cross sections of the specimens coated with the
salt mixture 2SM and exposed at 700°C for 100 h, showing distribution of different
elements: Nickel, Chromium, Iron and Oxygen for (a) non-USP and (b) 5 min USP
treated
Fig. 4. 13: Schematic showing the effect of surface roughness on hot corrosion of the
superalloy IN718 at 700°C
superalloy IN718 at 700°C.93Fig. 5. 1: Digital photographs of the hot corroded HCF specimen.99
Fig. 5. 1: Digital photographs of the hot corroded HCF specimen
Fig. 5. 1: Digital photographs of the hot corroded HCF specimen
 Fig. 5. 1: Digital photographs of the hot corroded HCF specimen
Fig. 5. 1: Digital photographs of the hot corroded HCF specimen
Fig. 5. 1: Digital photographs of the hot corroded HCF specimen.99Fig. 5. 2: X-ray diffraction pattern of the sample coated with $75Na_2SO_4 + 15NaCl + 10V_2O_5$ (wt.%) salt mixture (3SM) and exposed at 600°C for 100 h.100Fig. 5. 3: Variation of fatigue life with stress amplitude at 600°C, in air, for the as heat treated and pre hot corroded conditions.103
Fig. 5. 1: Digital photographs of the hot corroded HCF specimen.99Fig. 5. 2: X-ray diffraction pattern of the sample coated with $75Na_2SO_4 + 15NaCl + 10V_2O_5$ (wt.%) salt mixture (3SM) and exposed at 600°C for 100 h.100Fig. 5. 3: Variation of fatigue life with stress amplitude at 600°C, in air, for the as heat treated and pre hot corroded conditions.103Fig. 5. 4: SEM microgaphs of the sample coated with $75Na_2SO_4 + 15NaCl + 10V_2O_5$
Fig. 5. 1: Digital photographs of the hot corroded HCF specimen.99Fig. 5. 2: X-ray diffraction pattern of the sample coated with $75Na_2SO_4 + 15NaCl + 10V_2O_5$ (wt.%) salt mixture (3SM) and exposed at 600°C for 100 h.100Fig. 5. 3: Variation of fatigue life with stress amplitude at 600°C, in air, for the as heat treated and pre hot corroded conditions.103Fig. 5. 4: SEM microgaphs of the sample coated with $75Na_2SO_4 + 15NaCl + 10V_2O_5$ (wt.%) salt mixture and exposed at 600°C for 100 h: (a) surface topography,

Fig. 5. 6: Fractographs of the as heat treated sample fractured at the stress amplitude of ± 650 MPa at 600°C showing: (a) the fracture surface and crack initiation sites, (b) transgranular crack propagation and extremely fine fatigue striations in the encircled Fig. 5. 7: Fractographs of the as heat treated sample fractured at the stress amplitude of ± 750 MPa at 600°C showing: (a) fracture surface and crack initiation sites, (b) transgranular crack propagation and coarse fatigue striations......105 Fig. 5. 8: Fractographs of the fatigue sample pre-corroded and fractured from HCF at the stress amplitude of ± 500 MPa at 600°C in air showing: (a) fracture surface and crack initiation sites, (b) fatigue striations and (c) EDS analysis close to the crack initiation Fig. 5. 9: Fractographs of the fatigue sample pre-corroded and fractured from HCF at the stress amplitude of ± 550 MPa at 600°C in air showing: (a) fracture surface and crack initiation sites, (b) fatigue striations and (c) EDS analysis close to the crack initiation site......107 Fig. 5. 10: Fractographs of the fatigue sample pre-corroded and fractured from HCF at the stress amplitude of ± 650 MPa at 600°C in air showing: (a) fracture surface and crack initiation sites, (b) fatigue striations, and (c) EDS analysis close to the crack initiation Fig. 5. 11: Fractographs of the fatigue sample pre-corroded and fractured from HCF at the stress amplitude of ± 750 MPa at 600°C in air showing: (a) fracture surface and crack initiation sites, (b) fatigue striations, and (c) EDS analysis close to the crack initiation Fig. 5. 12: Backscattered SEM images of curved surfaces of the HCF fractured

specimens close to fracture ends, pre corroded in salt mixture with Na₂SO₄ + NaCl +

V_2O_5 and tested in HCF at 600°C at different stress amplitudes: (a) ± 500 MPa, (b) ± 550
MPa, (c) ± 650 MPa and (d) ± 750 MPa112
Fig. 5. 13: Backscatter SEM images of longitudinal sections of the specimens pre hot
corroded in salt mixture of Na ₂ SO ₄ +NaCl+V ₂ O ₅ and HCF tested at different stress
amplitudes: (a) ±500 MPa, (b) ±550 MPa, (c) ±650 MPa, and (d) ±750 MPa 113
Fig. 5. 14: Mechanism of hot corrosion and crack initiation/growth during the high cycle
fatigue: (I) hot corrosion (II) fatigue crack initiation and growth
Fig. 6. 1: Effect of stress ratio on fatigue life at 600 ⁰ C 120
Fig. 6. 2: Nicolas Haigh diagram: Maximum stress and stress amplitude vs mean stress
at R=0.7, at 600°C120
Fig. 6. 3: Effect of mean stress on plastic strain accumulation in the superalloy IN718
with number of cycles at $R=0.7$ and 600°C showing variation of cumulative plastic strain
with number of cycles at $R=0.7$ and 600°C showing variation of cumulative plastic strain with number of cycles
with number of cycles
with number of cycles
with number of cycles.121Fig. 6. 4: Fractographs of the sample fractured at the stress amplitude of ±600 Mpa (R=-1) at 600°C showing: (a) the fracture surface and crack initiation site, (b) transgranular
with number of cycles.121Fig. 6. 4: Fractographs of the sample fractured at the stress amplitude of ±600 Mpa (R=-1) at 600°C showing: (a) the fracture surface and crack initiation site, (b) transgranularcrack propagation and fatigue striations with smaller interstriation spacing.122
with number of cycles.121Fig. 6. 4: Fractographs of the sample fractured at the stress amplitude of ±600 Mpa (R=-1) at 600°C showing: (a) the fracture surface and crack initiation site, (b) transgranularcrack propagation and fatigue striations with smaller interstriation spacing.122Fig. 6. 5: Fractographs of the sample fractured at the stress amplitude of ±800 MPa
with number of cycles
with number of cycles
with number of cycles.121Fig. 6. 4: Fractographs of the sample fractured at the stress amplitude of ±600 Mpa (R=-1) at 600°C showing: (a) the fracture surface and crack initiation site, (b) transgranularcrack propagation and fatigue striations with smaller interstriation spacing.122Fig. 6. 5: Fractographs of the sample fractured at the stress amplitude of ±800 MPa(R= -1) at 600°C showing: (a) the fracture surface and crack initiation site,(b) transgranular crack propagation and fatigue striations with larger interstriationspacing.123

Fig. 6. 7: Fractographs of the sample fractured at the mean stress of 900 MPa ($R = 0.5$)
at 600°C showing: (a) the fracture surface and crack initiation site, (b) transgranular crack
propagation and fatigue striations
Fig. 6. 8: Fractographs of the sample fractured at the mean stress of 900 MPa ($R = 0.7$)
at 600°C showing: (a) the fracture surface and crack initiation sites, (b) mixed mode of
fracture with fatigue striations and dimples
Fig. 6. 9: Fractographs of the sample fractured at the mean stress of 950 MPa ($R = 0.7$)
at 600°C showing: (a) the fracture surface and crack initiation sites, (b) overload fracture
showing dimples