Index

Contents		i-v
List of	List of Figures	
List of Tables		xiv-xv
Prefac	ce	xvi-xix
CHAPTER 1: Introduction and Literature Review		1-40
1.1	Introduction	01
1.2	Ferroic ordering	03
1.3	Ferroelectric and Antiferroelectric Materials	03
1.4	Ferromagnetic and antiferromagnetic materials	05
1.5	Magnetic exchange interactions	08
	1.5.1 Direct exchange interaction	08
	1.5.2 Indirect exchange interaction	09
	1.5.3 Superexchange interaction	10
	1.5.4 Double exchange interaction	10
	1.5.5 Anisotropic exchange interaction	12
1.6	Multiferroic Materials	13
1.7	Magnetoelectric coupling in multiferroic materials	13
1.8	Incompatibility between magnetism and ferroelectricity	15
1.9	Approaches to the co-existence of the magnetism and ferroelectricity	15
1.10	Paramagnetic doping	16
1.11	Multiferroic materials with improper ferroelectricity	16
1.12	Ferroelectricity induced by lone-pair electrons	17
1.13	BiFeO ₃ as a multiferroic material	18
1.14	High temperature study of BiFeO ₃	23

1.15	Magnetoelectric coupling in BiFeO ₃	23
	1.15.1 Making of thin film	24
	1.15.2 Application of high magnetic field	25
	1.15.3 Doping in BiFeO ₃	26
	1.15.4 Solid solutions of BiFeO ₃ with other perovskite	28
	1.15.5 Nano structured BiFeO ₃	30
1.16	Solid solutions of BiFeO ₃ with PbTiO ₃	31
	1.16.1 Stability of different structural phases as a function of composition	31
	1.16.2 Magnetic studies	34
	1.16.3 High temperature studies	38
1.17	Objective of the Present Thesis	40
	PTER 2: Synthesis of different sizes of pure PT (x=0.20,0.25,0.30,0.35,0.40,0.50) powders	41-71
2.1	Introduction	41
2.2	Characterization tools	42
	2.2.1 X-ray diffraction	42
	2.2.2 TGA/DTA Characterization	42
	2.2.3 Scanning electron microscope (SEM) and energy dispersive x-ray analysis (EDX)	43
2.3	Synthesis of BF-xPT	43
	2.3.1 Sample preparation techniques	43
2.4	Optimization of calcination temperature	44
2.5	Optimization of chelating agent	46
2.6	Optimization of calcination temperature	47
2.7	Preparation of green pellets	49

2.8	Sintering	51
2.9	Synthesis of different sizes of BF-xPT above MPB (x=0.50, 0.40 and 0.35)	51
2.10	Synthesis of different sizes of BF-xPT below MPB (x=0.25 and 0.20)	54
	2.10.1 Optimization of sintering temperature forBF-0.25PT powder	54
2.11	Synthesis of different sizes of BF-xPT within MPB (x=0.30)	59
2.12	Microstructural and compositional studies for BF-xPT	60
	2.12.1 Microstructural and compositional studies for BF-0.5PT	60
	2.12.2 Microstructural and compositional studies for BF-0.4PT	62
	2.12.3 Microstructural and compositional studies for BF-0.35PT	64
	2.12.4 Microstructural and compositional studies for BF-0.3PT	65
	2.12.5 Microstructural and compositional studies for BF-0.25PT	67
	2.12.6 Microstructural and compositional studies for BF-0.2PT	68
	2.12.7 Microstructural and compositional studies for BF-xPT (x=0.2, 0.25 and 0.30) calcined at 550 $\!\!\!\!\!\!^{\circ}$	70
2.8	Conclusion	71
	TER 3: Room Temperature Structural Studies Using Synchrotron Powder Diffraction Data and Laboratory X-ray Powder Diffraction	72-102
3.1	Introduction	72
3.2	Experimental	73
3.3	A brief introduction of Rietveld refinement method	73
3.4	Rietveld refinement details of BF-xPT	77
3.5	Results and Discussion	79
	3.5.1 Rietveld refinement of the structure of BF-xPT for $x=0.5$	79
	3.5.2 Space group of BF-xPT for x=0.25	85
	3.5.3 Effect of particle size on the composition width of the phase coexistence region	91
	3.5.3.1 Effect on the Unit Cell Parameters	99
	3.5.3.2 Effect of Size on the Phase Fraction and	100

Tetragonality

3.6	Summary and conclusions	102
CHAI	PTER 4: Magnetic studies on different sizes of BF-0.5PT Powders	103-120
4.1	Introduction	103
4.2	Experimental	104
4.3	Rietveld analysis of the neutron powder diffraction pattern	105
4.4	Results and Discussion	105
	4.4.1 Magnetization studies of BF-0.5PT powder	107
	4.4.2 Neutron diffraction studies	111
	4.4.3 Role of super exchange interaction	114
	4.4.4 Evidence of enhancement of T _N at atomic level	115
4.5	Summary and conclusions	120
CHAI	PTER 5: Magnetic studies on different sizes of BF-0.25PT Powders	121-144
5.1	Introduction	121
5.2	Experimental	122
5.3	Rietveld analysis of the neutron powder diffraction pattern	123
5.4	Results and Discussion	125
	5.4.1 Room temperature Rietveld refinement of BF-0.25PT	125
	5.4.2 Magnetization studies of BF-0.25PT powder	128
	5.4.3 Effect of particle size on spin reorientation transition	132
	$5.4.4$ Role of crystal-chemical parameters in enhancing $T_{\rm N}$	136
5.5	Summary and conclusions	144
	PTER 6: Evidence of Griffiths-Like Phase in 25PT Solid Solution	145-157
6.1	Introduction	145

6.2	Experimental	148		
6.3	Results and Discussions	148		
	6.3.1 Evidence of Griffith-like phase	148		
6.4	Conclusions	157		
	TER 7: High Temperature Structural Phase Transition in Different f BF-0.5PT Solid Solution	158-185		
7.1	Introduction	158		
7.2	Experimental details	160		
7.3	Results and Discussions	160		
	7.3.1 Evolution of the SXRD profile of BF0.5PT powder of different sizes with temperature	160		
	7.3.2 Temperature dependent profile refinement of BF-0.5PT of different sizes	164		
	7.3.3 Variation of structural parameter with size	171		
7.4	Summary and Conclusions	174		
CHAPTER 8: Summary and suggestion for Future Work		175-177		
References		178-194		
List of Publications				

Personal Profile