List of figures

Figure No.	Figure Caption	Page No.
Figure 1.1	Large area based application of CPs and its composites [2].	2
Figure 1.2	(i) Chemical structure of CPs, (ii) conductivity comparison of	4
	undoped (pristine) and doped polymers [7].	
Figure 1.3	(a) Generation of polaron, bipolaron and bipolaron bands as a	4
	result of doping level in various CPs (b) Formation of neutral,	
	positive and negatively charged soliton, (c) formation of two	
	charged solitons on a chain of trans-PA [6].	
Figure 1.4	(a) Schematic representation of the semi-crystalline structure	13
	of P3HT (b) High resolution-TEM micrograph showing the	
	packing of P3HT chains, (inset: SAED pattern) [35].	
Figure 1.5	Arrangement of polymer backbone from solution (bulk) to	15
	ordered array.	
Figure 1.6	(a) TEM image of AgNP superlattice, histogram (PSD=	15
	4.1±0.23 nm) (b) HR-TEM (interparticle distance=1.51 nm)	
	(c) 2-D Fourier transform spectrum of (b) [52].	
Figure 1.7	Deposition type on hydrophilic and hydrophobic substrates	19
	for transfer of Langmuir monolayers: (a) Z-type, (e) Y-type,	
	(f) X-type.	
Figure 1.8	Various steps involved in Langmuir technique. Step 1: A-C)	21
	solvent spreading, Step 2: Barrier compression, Step 3:	
	Substrate stamping (Schaefer style), Step 4: Substrate lifting.	
Figure 1.9	SP vs. area $(\pi$ -A) isotherm depicting various monolayer phase	22
	transitions.	
Figure 1.10	Energy level diagram of metal-semiconductor (n-type)	26
	interface (a) before and (b) after the contact.	
Figure 1.11	Energy level diagram of metal-semiconductor (p-type)	27
	interface (a) before and (b) after the contact.	
Figure 1.12	Energy level diagram of metal-semiconductor interface for	28
	ohmic behaviour (a) before and (b) after the contact.	

Figure 2.1	Reaction scheme for the synthesis of PIn.	37
Figure 2.2	Experimental setup for electrochemical synthesis of PIn.	38
Figure 2.3	Schematic representation of interfacial polymerization of 5-	39
	AIn at aqueous/organic solvent system. The top phase is an	
	aqueous solution of APS and bottom phase is	
	monomer/Chloroform solution.	
Figure 2.4	Schematic representation of hydrothermal synthesis of MoS ₂	40
	nanosheets, their exfoliation, and MoS2-PIn nanocomposite	
	formation.	
Figure 2.5	Biphasic system with chloroform at bottom containing	43
	various DDAB concentration labelled as (1) 5, (2) 10, (3) 25,	
	(4) 50 and (5) 75 mM and upper layer containing hydrosol (a)	
	Before phase transfer (b) After phase transfer.	
Figure 2.6	Photograph of LB film deposition system.	44
Figure 2.7	Photograph of Nuclear Magnetic Resonance (NMR)	45
	spectrometer and its basic working principle.	
Figure 2.8	Electronic transitions in a molecule.	46
Figure 2.9	Basic instrumentation of UV-Vis spectrometer.	47
Figure 2.10	(a) A simple schematic diagram of the FT-IR spectrometer (b)	47
	Photograph of FT-IR spectrometer.	
Figure 2.11	Physical process involved in XPS.	49
Figure 2.12	Schematic representation of the experimental setup of CV.	50
Figure 2.13	Photograph of our SEM and HR-SEM.	52
Figure 2.14	(a) Photograph of TEM (b) Layout of optical component of	52
	TEM instrument.	
Figure 2.15	A simple schematic diagram of the AFM.	53
Figure 2.16	Schematic diagram of Thermal Evaporating vacuum system.	55
Figure 2.17	(a) Schematic diagram of ITO/Semiconductor LB (or LS)	56
	film/Al sandwiched structure, and (b) Photograph of	
	sourcemeter.	
Figure 3.1	(a) ¹ H-NMR spectrum and (b) FT-IR spectrum of	61
	electrochemically synthesized PIn.	

Figure 1.13 Oxidative polymerization mechanism of indole.

31

Figure 3.2	FAB Mass spectrum of electrochemically synthesized PIn.	61
Figure 3.3	Pressure vs. area $(\pi$ -A) isotherm of PIn at room temperature	62
	(marked points display different pressures 20, 30 and 40	
	mN/m under study). Inset shows photograph of PIn solution	
	prepared for LB study.	
Figure 3.4	Tapping mode AFM and SEM images of monolayer LB film	64
	of PIn at different deposition pressures (as marked in	
	isotherm) (a & b) @ 20 mN/m, (c & d) @ 30 mN/m, (e & f)	
	@ 40 mN/m respectively. Each inset shows the magnified	
	image encircled region	
Figure 3.5	(a) SEM image of single layer LB film of PIn. Inset shows the	65
	magnified image encircled region (b) AFM image of single layer	
	LB film of PIn.	
Figure 3.6	Topographic AFM 3D images of monolayer PIn LB film	65
	deposited at different SP (a) 20 mN/m, (b) 30 mN/m, (c) 40	
	mN/m respectively.	
Figure 3.7	Schematic representation of plausible arrangement of PIn	67
	molecules onto water subphase at different SP (20, 30 and 40	
	mN/m).	
Figure 3.8	(a) UV-Vis absorption spectra of PIn (solution) and LB film of	67
	PIn with inset depicting its band gap.(b) Raman spectra of PIn	
	(Powder) synthesized electrochemically and PIn LB film	
	(monolayer and 5 layers), respectively.	
Figure 3.9	(a) J-V characteristics of LB film of PIn single layer (1 L), 3	73
	layers (3 L), and 5 layers (5 L) respectively (b) semilog plot	
	of single layer, 3 layers and 5 layers.	
Figure 4.1	¹ H-NMR spectra of (a) 5-AIn (b) 5-APIn.	79
Figure 4.2	FT-IR spectra of (a) 5-AIn (b) 5-APIn.	81
Figure 4.3	Plausible mechanism of polymerization of 5-AIn.	83
Figure 4.4	UV-visible spectrum of (a) 5-AIn (b) 5-APIn (Inset shows	84
	optical band gap of 5-APIn)	
Figure 4.5	Gel permeation chromatogram of 5-APIn.	85
Figure 4.6	XRD pattern of 5-APIn.	85

Figure 4.7	SEM images of 5-APIn formed at the interface after (a) 3	86
	min, (b) 5 min, (c) 15 min, (d) magnified form of image (c),	
	(e) 60 min and (f) after 24h.	
Figure 4.8	TGA and DTA curves of 5-AIn (a & a') and 5-APIn (b & b')	88
	respectively.	
Figure 4.9	CV of (a) bare Au electrode (b) 5-APIn/Au. The inset shows	89
	an enlarged view of similar CV plot.	
Figure 4.10	CV of (a) bare Au electrode and 5-APIn/Au in presence of	90
	$0.5~M~H2SO4$ at scan rate (b) $20~mVs^{\text{-}1},$ (c) $50~mVs^{\text{-}1}$ and (d)	
	100 mV s^{-1} .	
Figure 4.11	Schematic representation of redox recyclability behavior of 5-	91
	APIn in 0.5M H2SO4.	
Figure 4.12	EIS of (a) bare Au electrode, (b) 5-APIn/Au. (inset: EIS data	92
	fitted by ZSimp software for bare Au electrode and 5-	
	APIn/Au with their electrical equivalent circuit.)	
Figure 4.13	Electron distribution for the 5-APIn (a) HOMO and (b)	92
	LUMO energy levels obtained at the wB97XD/6-31G* level	
	of theory in gas phase. Here blue, gray and white balls	
	represent N, C and H-atoms respectively.	
Figure 4.14	Pressure-area (π-A) isotherm of 5-APIn depicting various	94
	regions I, II, III, IV (inset shows 5-APIn dispersion)	
Figure 4.15	SEM images 5-APIn LS film deposited at different pressures	97
	(a) 35, (b) 45, (c) magnified image of b, (d) 55 mN/m, and (e)	
	multilayer (5L) LS film lifted at 45 mN/m.	
Figure 4.16	Tapping-mode AFM image of 5-APIn fabricated at optimum	97
	pressure (45 mN/m) via LS method (a) 2D (b) 3D (c) and (d)	
	horizontal and vertical surface profile.	
Figure 4.17	Raman spectra of (a) 5-APIn LS film and (b) 5-APIn powder	98
	(bulk).	
Figure 4.18	Pictorial representation depicting the 5-APIn dispersion	99
	spread over water subphase (a) before and (b) after	
	compression upto 45 mN/m and its LS film fabrication.	
Figure 4.19	(a) log J vs. V plot and (b) log J vs. log V plot of sandwiched	99

	structure Al/APIn LS film/ITO.	
Figure 5.1	Characterizations of MoS ₂ nanosheets synthesized via hydrothermal process (a) TEM (inset showing SAED pattern) (b) HRTEM image, (c) intensity profile graph depicting interlayer distance, (d) EDS elemental analysis, (e) XRD pattern.	109
Figure 5.2	(a) HAADF-STEM, (b) TEM image and element mapping images of MoS ₂ (c) S, (d) Mo.	109
Figure 5.3	(a) UV-vis and (b) vibrational spectroscopy of (i) MoS ₂ nanosheets, (ii) PIn and (iii) MoS ₂ -PIn composite.	110
Figure 5.4	(a) XRD pattern and (b) TGA of (i) PIn and (ii) MoS ₂ -PIn nanocomposite (bulk).	112
Figure 5.5	TEM micrographs of drop casted MoS ₂ -PIn nanocomposite at different scale bars (a) 200 nm (b) 50 nm.	113
Figure 5.6	(a) HAADF-STEM and (b) element mapping images of MoS ₂ -PIn nanocomposite (bulk drop casted): (c) C, (d) N, (e) S, (f) Mo.	113
Figure 5.7	CV curves of (a) GCE, (b) MoS ₂ /GCE, (c) PIn/GCE, (d) MoS ₂ -PIn-1/GCE, and (e) MoS ₂ -PIn-2/GCE (f) MoS ₂ -PIn-3/GCE in a 5 mM [Fe(CN) ₆] ^{3-/4-} mixture (1:1); 0.1 M KCl (Scan rate 20 mVs ⁻¹).	114
Figure 5.8	TEM micrographs of LS films of (a) MoS ₂ -PIn-1 and (b) MoS ₂ -PIn-3 (dark patches pointed with arrows represent MoS ₂).	114
Figure 5.9	Pressure vs. Area $(\pi$ -A) isotherm of (a) PIn and (b) MoS ₂ -PIn nanocomposite.	117
Figure 5.10	Schematic representation of assembly of MoS ₂ -PIn on water subphase initially, after barrier compression and LS film fabrication.	117
Figure 5.11	TEM micrographs of LS films of (a,b) PIn and (c,d) MoS ₂ -	120

PIn.

Figure 5.12	(a) HAADF-STEM and (b) element mapping images of	120
	MoS ₂ -PIn LS film: (c) C, (d) N, (e) S, (f) Mo.	
Figure 5.13	Tapping mode AFM and phase contrast images of LS films of	121
	(a,b) PIn and (c,d) MoS ₂ -PIn.	
Figure 5.14	(a) Current density-voltage (J-V) measurement (b) Semi-log	121
	plot for 5 layered LS film fabricated Al/PIn/ITO (black curve)	
	and Al/ MoS ₂ -PIn/ITO (red curve) device structure.	
Figure 6.1	UV-vis spectra of (a) deionised water, (b) chloroform, (c)	130
	pure silver hydrosol, (d) supernatant aqueous phase (after	
	phase transfer; shown in inset) and (e) chloroform subphase	
	(after phase transfer; shown in inset).	
Figure 6.2	FT-IR spectra of (a) pure DDAB (b) silver organosol.	131
Figure 6.3	XPS spectra of silver organosol.	131
Figure 6.4	XRD pattern of silver NPs in organic phase. Inset shows	132
	amplified diffraction pattern corresponding to (111), (200),	
	(220) and (311) planes of fcc silver.	
Figure 6.5	TEM image of (a) silver hydrosol (inset: SAED pattern) (b)	134
	silver organosol (inset: SAED pattern)	
Figure 6.6	TEM images of silver colloid in organic phase (inset:	134
	histogram depicting PSD) with varying DDAB concentration	
	namely (a) 5 mM (b) 10 mM (c) 25 mM (d) 50 mM (e) 75	
	mM and (f) plausible structure for DDAB acting as AgNP	
	stabilizer.	
Figure 6.7	Trend of increasing median particle dimension (diameter) and	137
	the corresponding width of distribution represented as error	
	bars.	
Figure 6.8	(a) UV-Vis spectra of (i) organosol (ii) PIn, (iii) Ag-PIn, and	138
	(b) FT-IR spectra of (i) PIn and (ii) Ag-PIn.	
Figure 6.9	Pressure vs area $(\pi$ -A) isotherm for (a) PIn, and Ag-PIn along	140
	with schematic depicting the phenomena at various regions,	
	(b) compression-expansion curve for PIn and Ag-PIn	
	nanohybrid at SP=30 mN/m, (c) compression-relaxation	
	phenomena at three different SPs (30, 40, and 50 mN/m) from	

	different regions (II, III and IV) of the isotherm, (d)	
	compression-relaxation cycle of Ag-PIn film.	
Figure 6.10	TEM micrograph of a single time lifted layer PIn LS film at	143
	30 mN/m SP at (a) low magnification (inset: SAED) and (b)	
	high magnification (inset: d-spacing).	
Figure 6.11	(a) TEM image (inset: SAED pattern), (b) HAADF image and	143
	(c) elemental mapping of drop cast Ag-PIn nanohybrid film.	
Figure 6.12	TEM micrograph of AgNP-PIn Langmuir film deposited at	144
	40 mN/m at different magnification scale (a) 50 nm and (c)	
	20 nm; FT of Region 1 and 2.	
Figure 6.13	GIWAXS 2D q plot of (a) PIn and (b) Ag-PIn LS film	145
Figure 6.14	Tapping mode atomic force micrographs of (a) PIn and (c)	146
	Ag-PIn Langmuir film deposited at 30 and 40 mN/m	
	respectively with their corresponding (b) and (d) roughness	
	distribution.	
Figure 6.15	Phase contrast micrographs of (a) PIn and (c) Ag-PIn	147
	Langmuir film deposited at 30 and 40 mN/m respectively	
	with their corresponding (b) and (d) grain segment.	
Figure 6.16	(a) Film lifting method of type 1 and 2 for contact angle	148
	measurements of LS film of (b) 1-PIn, (c) 2-PIn and (d) Ag-	
	PIn LS films, (e) and (f) Kelvin probe force micrographs of	
	(b) and (d) LS films respectively.	
Figure 6.17	UV-vis spectra of LS films (a) PIn and (b) Ag-PIn.	149
Figure 6.18	Raman spectra of (a) PIn and (b) Ag-PIn LS films (inset:	150
	SERs effect)	
Figure 6.19	Current density-voltage (J-V and J-V ²) characteristics of 5L	151
	LS film of pristine PIn and Ag-PIn nanohybrid.	
Figure 6.20	XPS spectra of C 1s and N 1s for (a & b) PIn LS film, (c & d)	155
	Ag-PIn LS film.	
Figure 6.21	XPS spectra for the silver present in organosol and Ag-PIn	155
	LS film.	
Figure 6.22	XPS spectra of Ag-PIn LS film: (a) N1s and (b) C1s	156
	spectrum. Peak positions are mentioned for the fitted	

components.

Figure 6.23 Schematic representing the partial charge transfer from PIn to

AgNPs resulting in lowering of BE, SERS phenomena and
enhancement in charge transport property of Ag-PIn
nanohybrid.