Thesis

LIST OF FIGURES

Figure No.	Title	Page No.
Figure 1.1	Cartoon conformation of AFP	2
Figure 1.2	Structure of chitin (N-acetyl-glucosamine)	4
Figure 1.3	Proportion of emerging infectious diseases caused by different taxonomic	6
	groups of pathogens	
Figure 1.4	Targets of systemic antifungal agents	11
Figure 1.5	Sites of action and mechanisms of systemic antifungal agents. Glucan	13
	synthase complex are the putative target binding site of echinocandins	
Figure 4.1	Effect of soluble starch and CSL with proteose peptone under varying	60
	concentration on mycelial growth and afp production in batch culture under	
	submerged fermentation by A. giganteus MTCC 8408	
Figure 4.2	Effect of initial pH and temperature on mycelial growth and afp production	61
	in modified Olson media under submerged fermentation by A. giganteus	
	MTCC 8408	
Figure 4.3	Impact of selected factor at their assigned ratio $Y_{p/x}$ by A. giganteus MTCC:	64
	8408 in submerged fermentation	
Figure 4.4	Morphological differentiation of Aspergillus giganteus MTCC 8408 cell on	66
	nutrient dynamics and optimization. Lateral resolution: 2-10 lm;	
	magnification: 5KX; EHT: 18.00 kV; WD: 9.5 mm	
Figure 4.5	Severity index interaction plot and performance distribution plot	69

Figure 4.6	Morphological behaviors of Aspergillus giganteus MTCC 8408, showing	72
	the effect of various nutrients composition on optimization. Lateral	
	resolution: 2–10 mm; magnification: 5KX; EHT: 18.00 KV; WD: 9.5 mm.	
Figure 4.7	Relative influence of factors and interactions.	74
Figure 4.8	Performance distribution plot: current vs. improved condition.	76
Figure 4.9	A typical time course of carbohydrates consumption, viz., (a) soluble	78-80
	starch, (b) glucose, (c) maltose, (d) sucrose and (e) lactose vs. mycelial	
	biomass and antifungal protein production in submerged fermentation under	
	statistically optimized new modified culture conditions (using Taguchi	
	DOE L ₂₇ OA).	
Figure 4.10	Fitting experimental data and calculated RMSE value with various model,	82-84
	viz., Monod, Moser, Tessier, Blackman, Haldane and Logistic model.	
Figure 4.11	Fitting experimental data and calculated RMSE value in macroscopic	87
	model (Logistic) linking with microscopic model (symmetric branching) in	
	exponential growth phase.	
Figure 4.12	Simulation profile of predicted kinetic model with μ_{m} (max. specific growth	89-90
	rate), K_s (substrate saturation constant), E (mean hyphal extension rate) and	
	S (substrate concentration).	
Figure 4.13	Purification of the antifungal protein from the intracellular extract of	91-92
	Aspergillus giganteus MTCC 8408, (a) CMC cation exchange	
	chromatography of the crude extract (50-70%), (b) Sephadex-100 gel	
	filtration chromatography of fraction F-4.	
Figure 4.14	Disc diffusion study of crude afp and Acp-N84.	94
Figure 4.15	Dose response study of Acp-N84.	95

Figure 4.16	Imaging in vitro antibiofilm activity: Appearance of different cell	96
	morphologies of <i>C. albicans</i> using confocal microscopy	
Figure 4.17	Imaging in vitro antibiofilm activity: Atomic force micrographs	97
Figure 4.18	Imaging in vitro antibiofilm activity: Scanning electron micrograph of the	97
	48 h biofilm formed in <i>C. albicans</i>	
Figure 4.19	Time killing assay of Candida albicans, protein Acp-N84 was investigated	98
	in vitro with conventional antifungal agents	
Figure 4.20	Cytotoxicity assay in human cervical cancer (HeLa) cells on treatment with	100
	peptides	
Figure 4.21	Apoptotic detection by Hoechst 33342/Propidium iodide staining in HeLa	101
	cells.	
Figure 4.22	SDS-polyacrylamide gel electrophoresis, molecular mass and ESI-MS	102
	spectrum of purified Acp-N84 protein.	
Figure 4.23	FTIR spectrum of purified Acp-N84 protein.	104
Figure 4.24	Peptide mass fingerprinting of Acp-N84 by MALDI-TOF MS.	105
Figure 4.25	Prediction of disulfide bridges formation (DISULFIND)	108
Figure 4.26	Cleavage site prediction of the signal sequence Acp-N84 (SignalP1-4.1)	108
Figure 4.27	Protein structure prediction (PSIPRED)	110