List of Figures

1.1 1.2 1.3 1.4	Deposits of bauxite ore (a) world and (b) India	5 6 12 13
2.1	Location of HINDALCO alumina plant	33
2.2	Grain size distribution of red mud	34
2.3	Variation of pH of red mud with lime	35
2.4	Schematic representation of central composite experimental designs .	40
2.5	Schematic diagram of Box-Behnken experimental design	41
2.6	Volume-moisture content relationship	43
2.7	Universal hydraulic sample extruder	46
2.8	Automatic unconfined compression soil testing machine setup	47
2.9	Split tensile mold assembly	48
2.10	Scanning electron microscopy with energy-dispersive X-ray spectroscopy	
	detector setup	49
2.11	Atomic absorption spectrophotometer setup	51
2.12	Biological model of a neuron	52
	Basic artificial neural network architecture	53
2.14	Mathematical model of neuron	54
2.15	Different transfer function (a) stepped (b) linear (c) logistic sigmoid	۲٥
0.16	and (d) hyperbolic tangent sigmoid	58
2.10	Taylor's plot	63
3.1	Compaction curves of red mud, red mud-lime and molding points	66
3.2	Influence of lime content and dry unit weight on q_u of red mud at	
	varying curing time (a) 7 days, (b) 28 days, and (c) 60 days	69
3.3	Variation of (q_u) of red mud –lime mix with (a) curing time and (b)	
	molding moisture content	70
3.4	SEM images (10 kX) of (a) red mud, (b) lime, (c) red mud + 3 %	
	lime at density = 14 kN/m^3 , (d) red mud + 3 % lime at density =	
	15.5 kN/m^3 (e) red mud + 9 % lime at density =14 kN/m^3 , and (f)	
	red mud + 9 % lime at density = 15.5 kN/m^3	71

List of Figures xviii

3.5	EDX of (a) red mud, (b) lime, (c) red mud + 3 % lime at density = $14 \ kN/m^3$, and (d) red mud + 9 % lime at density = $14 \ kN/m^3$	72
3.6	Variation of Ca/Si, and Si/Al ratio of red mud with binders	73
3.7	Variation of unconfined compressive strength (q_u) with water/lime ratio (w/L)	75
3.8	Variation of unconfined compressive strength (q_u) with adjusted water/lime ratio (w/L) (a) 7 days, (b) 28 days, and (c) 60 days	76
3.9	Variation of $(q_u/(w/L)^{0.60})$ with (γ_d) for curing time (a) 7 days, (b) 28 days and (c) 60 days	78
3.10	unique correlations linking q_u , w , L , γ_d and t	79
3.11	Effect of porosity/volumetric lime content ratio (η/L_v) on unconfined compressive strength (q_u) of red mud –lime mix with varying curing periods (a) 7 days, (b) 28 days and (c) 60 days	80
3.12	Variation of η with q_u with varying curing periods (a) 7 days, (b) 28 days and (c) 60 days	81
3.13	Variation of inverse of L_v with q_u with varying curing periods (a) 7 days, (b) 28 days and (c) 60 days	82
	tio $(\eta/L_v^{0.11})$ on unconfined compressive strength (q_u) with varying moisture content (a) 26 %, (b) 28 % and (c) 30 %	84
3.15	q_u vs $\left[\eta/L_v^{0.11}\right]^{-4.47}$ plots for different moisture content (a) 26 %, (b) 28 %, and (c) 30 %	85
3.16	$[\eta/L_v^{0.11}]^{-4.47}$ vs. $[t]^{0.29}$ plots for different curing time and different	0.
2 17	moisture content	87 88
	Relationship linking q_u , η , L_v , t and w	89
3.19	Scatter plot between computed and predicted values of unconfined compressive strength of stabilized red mud	96
3.20	Scaled percent error (SPE) vs.commulative frequency plot between computed and predicted values of q_u of stabilized red mud	97
3.21	Taylor plot between computed and predicted q_u of stabilized red mud.	
	The 3D Response Surface Plots of the variation of the loss of mass of	
	the Mix with (a) w/L and N and (b) γ_d and t	105
3.23	The 3D Response Surface Plots of the variation of the loss of mass of the Mix with (a) $\eta/L_{v^{0.11}}$ and N and (b) t and w	
3 24	Scatter plot between computed and predicted loss of mass \dots	
	Scaled percent error vs cumulative frequency plot between computed and predicted values of loss of mass	
4.1	Scatter plot between measured and predicted values of unconfined compressive strength (q_n) based on conventional designed ANN model	117

List of Figures xix

4.2	Scatter plot between measured and predicted values of unconfined compressive strength (q_u) based on model (a) central composite design and(b) Box-Behnken design ANN model
4.3	Variation of predicted vs. measured unconfined compressive strength
	for stabilized red mud based on conventional, central composite and
	Box-Behnken designed ANN models
4.4	Neural interpretation diagrams based on (a) Conventional (b) Central
	composite and (c) Box-Behnken designed ANN model
4.5	Relative contribution of input parameters on response based on (a)
	Conventional (b) Central composite and (c) Box-Behnken designed
	ANN model
5.1	Fabricated brick mould along with assembly (a) front and(b) top view 132
5.2	Prepared brick (a) top and(b) front view
5.3	Failed brick (a) side and(b) front view
5.4	Flow chart of the sequence of construction and quality control for
	stabilized red mud for pavement applications (images are for repre-
	sentation purposes only)