4.5	5.1.1	Effect of biomass concentration on total sugar yield	110
4.5	5.1.2	Fermentation of reducing sugars to ethanol	111
4.5	5.1.3	SHF under non-agitated condition	113
4.5	5.1.4	SHF under agitated condition	115
4.5.2	Sim	ultaneous saccharification and fermentation (SSF) of	117
	mici	roalgal carbohydrate	
4.5.	2.1	SSF of microalgal carbohydrate under non-agitated condition	118
4.5.	2.2	SSF of microalgal carbohydrate under agitated condition	120
4.5.3	Ma	thematical modeling of SHF under non-agitated and agitated	122
	cond	ditions	
4.5.4	Mat	hematical modeling of SSF of algal carbohydrate under non-	129
	agita	ated and agitated conditions	
CHAPTER :	5		
Summary and Conclusions		139-143	
References		145-160	
Appendix A-B			161-162
List of Publications			163

LIST OF FIGURES

S. No.	Figure	Page
		No.
1.1	Schematic representation of ethanol fermentation pathway	2
1.2	Starch synthesis in chloroplasts	6
1.3	Various methods of pre-treatment of micro-algal biomass	7
1.4	Production process of bioethanol	9
2.1	Blockage of lipid synthesis pathway by cerulenin in microalgae and	23
	accumulation of starch	
2.2	Separate hydrolysis and fermentation of algae carbohydrate	34
2.3	Simultaneous saccharification and fermentation of algae carbohydrate	35
3.1	The arrangement of 18s, 5.8s and 28s rRNA genes	42
3.2	Reactions involved in starch determination	47
3.3	A setup of soxhlet apparatus (A), separating funnel containing	48
	chloroform with crude lipid mixture and methanol (B)	
3.4	The bubble column photobioreactor used for microalgae growth	51
3.5	Set-up of stirred tank photobioreactor	52
3.6	Schematic diagram of internal loop photobioreactor (A) and external	53
	loop photobioreactor (B).	
4.1	Pure colonies of isolated microalgae	72
4.2	Microscopic view of isolated microalgae	72
4.3	Agarose gel electrophoresis of PCR amplified 5.8s rRNA gene	73

4.4	Maximum likelihood phylogenetic tree of 18s r RNA sequence of	74
	isolated microalgae	
4.5	Growth of C. Sorokiniana (A) and T. obliquus (B) with 0.5% (v/v)	75
	inoculum	
4.6	Growth of C. Sorokiniana (A) and T.obliquus (B) with 2.0% (v/v)	76
	inoculum	
4.7	Growth of C. Sorokiniana (A) and T. obliquus (B) with 5.0% (v/v)	76
	inoculum	
4.8	Growth of C. Sorokiniana (A) and T. obliquus (B) at different pH	77
4.9	Specific growth rates of C. sorokiniana and T. obliquus at different	78
	temperatues	
4.10	Growth of C. Sorokiniana (A) and T. obliquus (B) at different agitation	79
	conditions(rpm)	
4.11	Microalgae grown in bubble column bioreactor	80
4.12	Growth of C. Sorokiniana (A) and T. obliquus (B) in bubble column	81
	bioreactor	
4.13	Growth of microalgae at t=0 and t=12 days	82
4.14	Growth of C. Sorokiniana (A) and T. obliquus (B) in stirred tank	82
	bioreactor	
4.15	Microalgae growth in the internal loop and external loop air-lift	83
	photobioreactor	
4.16	Growth of C. Sorokiniana (A) and T. obliquus (B) in the internal loop	84
	air-lift photobioreactor with air and 2.0% CO ₂	

4.17	Growth of C. Sorokiniana (A) and T. obliquus (B) in the external loop	85
	air-lift photobioreactor with air and 2.0% CO_2	
4.18	Specific growth rates of <i>C. sorokiniana</i> in different photobioreactors	86
4.19	Specific growth rates of <i>T. obliquus</i> in different photobioreactors	86
4.20	Comparision of biomass, carbohydrate and starch productivities of C.	88
	sorokiniana in bubble column, stirred tank, external loop airlift and	
	internal loop airlift photobioreactors.	
4.21	Comparision of biomass, carbohydrate and starch productivities of <i>T</i> .	90
	obliquus in bubble column, stirred tank, external loop airlift and	
	internal loop airlift photobioreactors.	
4.22	The carbohydrate, starch and lipid content of C. sorokiniana after	92
	cycloheximide treatment.	
4.23	The carbohydrate, starch and lipid content of T.obliquus after	92
	cycloheximide treatment.	
4.24	The carbohydrate, starch and lipid content of C. sorokiniana after	93
	cerulenin treatment.	
4.25	The carbohydrate, starch and lipid content of T. obliquus after	94
	cerulenin treatment.	
4.26	The carbohydrate content of <i>C. sorokiniana</i> after Nitrogen, Phosphorus	96
	and Suphur limitation	
4.27	The carbohydrate content of T. obliquus after Nitrogen, Phosphorus	97
	and Suphur limitation	

4.28	The starch content of C. sorokiniana after Nitrogen, Phosphorus and	97
	Suphur limitation	
4.29	The starch content of T. obliquus after Nitrogen, Phosphorus and	98
	Suphur limitation	
4.30	Microscopic view of microalgae before and after the pre-treatments	101
4.31	The sugar released after acidic pre-treatment of C. sorokiniana and T.	103
	obliquus biomass	
4.32	The sugar released after NaOH pre-treatment of C. sorokiniana and T.	104
	obliquus biomass	
4.33	The sugar released after hydroxyl radical-aided thermal pre-treatment	105
	of C. sorokiniana and T. obliquus biomass	
4.34	The sugar released after ultrasonication pre-treatment of C. sorokiniana	106
	and T. obliquus biomass	
4.35	The sugar released after enzymatic pre-treatment and ultarsonication	108
	followed by enzymatic pre-treatment of C. sorokiniana and T.	
	obliquus biomass	
4.36	The sugar released after pre-treatment of C. sorokiniana and T.	108
	obliquus biomass by different pre-treatment methods	
4.37	The SEM images of C. sorokiniana (A-Before pre-treatment and B-	109
	After pre-treatment) and T. obliquus (C-Before pre-treatment and D-	
	After pre-treatment)	
4.38	The effect of biomass concentrations on total reducing sugars by acidic	112
	pre-treatment	

4.39	The effect of biomass concentrations on total reducing sugars by	113
	ultrasonication followed by enzymatic pre-treatment	
4.40	The sugar depletion and ethanol production profiles of SHF in C .	114
	sorokiniana biomass after acidic and enzymatic hydrolysis under non-	
	agitated condition	
4.41	The sugar depletion and ethanol production profiles of SHF in T .	115
	obliquus biomass after acidic and enzymatic hydrolysis under non-	
	agitated condition	
4.42	The sugar depletion and ethanol production profiles of SHF using C .	116
	sorokiniana biomass after acidic and enzymatic hydrolysis under	
	agitated condition	
4.43	The sugar depletion and ethanol production profiles of SHF in <i>T</i> .	117
	obliquus biomass after acidic and enzymatic hydrolysis under agitated	
	condition	
4.44	Concentration profiles of carbohydrate (S), glucose (G), and	119
7.77	Bioethanol (E) of SSF using <i>C. sorokiniana</i> biomass under non-	117
	agitated condition.	
4.45	Concentration profiles of carbohydrate (S), glucose (G), and bioethanol	119
7.73	(E) of SSF using <i>T. obliquus</i> biomass under non-agitated condition.	11)
4.46		101
4.46	Experimental concentration profiles of carbohydrate (S), glucose(G),	121
	and bioethanol (E) vs. time(t) under agitated conditions for C.	
	sorokiniana	

4.47	Experimental concentration profiles of carbohydrate (S), glucose(G),	121
	and bioethanol (E) vs. time(t) under agitated conditions for T. obliquus	
4.48	The concentration profiles of reducing sugar (G), yeast cell mass (X)	123
	and ethanol (E) during SHF under non-agitated conditions	
4.49	The experimental and predicted profiles of reducing sugar consumption	125
	during SHF under non-agitated condition. Line () shows the model	
	data while cross(x) shows the experimental data	
4.50	The experimental and predicted profiles of yeast cell mass during SHF	126
	under non-agitated condition. Line () shows the model data while	
	cross(x) shows the experimental data	
4.51	The experimental and predicted profiles of ethanol production during	126
	SHF under non-agitated condition. Line () shows the model data	
	while cross(x) shows the experimental data	
4.52	The concentration profiles of reducing sugar (G), yeast cell mass (X)	127
	and ethanol (E) during SHF under agitated condition	
4.53	The experimental and predicted profiles of reducing sugar consumption	128
	during SHF under shaking condition. Line () shows the model data	
	while cross (x) shows the experimental data	
4.54	The experimental and predicted profiles of yeast cell mass during SHF	128
	under shaking condition. Line () shows the model data while cross	
	(x) shows the experimental data	
4.55	The experimental and predicted profiles of ethanol production during	129

	SHF under shaking condition. Line () shows the model data while	
	cross(x) shows the experimental data	
4.56	The concentration profiles of reducing sugar (G), carbohydrate	130
	(S), yeast cell mass (X) and ethanol (E) during SSF	
4.57	Profile of predicted (lines) and experimental (x) carbohydrate depletion	132
	during the simultaneous saccharification and fermentation (SSF)	
	process under non-agitated conditions	
4.58	Profile of predicted (lines) and experimental (x) glucose (G) during the	133
	simultaneous saccharification and fermentation (SSF) process under	
	non-agitated conditions	
4.59	Profile of predicted (lines) and experimental (symbols) cell mass	134
	concentration during the simultaneous saccharification and	
	fermentation (SSF) process under non-agitated conditions	
4.60	Profile of predicted (lines) and experimental (symbols) bioethanol	134
	during the simultaneous saccharification and fermentation (SSF)	
	process under non-agitated conditions	
4.61	The concentration profiles of reducing sugar (G), starch (S), yeast cell	136
	mass (X) and ethanol (E) during SSF under agitated conditions	150
4.62	Profile of predicted (lines) and experimental (x) starch depletion during	136
4.02		130
	the simultaneous saccharification and fermentation (SSF) process	
	under agitated conditions	

4. 63 Profile of predicted (lines) and experimental (x) glucose (G) during the simultaneous saccharification and fermentation (SSF) process under agitated conditions
4.64 Profile of predicted (lines) and experimental (x) cell mass (X) 137 concentration during the simultaneous saccharification and fermentation (SSF) process under agitated conditions
4.65 Profile of predicted (lines) and experimental (x) bioethanol (E) during the simultaneous saccharification and fermentation (SSF) process under agitated conditions