Figure 1.1	Schematic representation of general ferroelectric materials landscape.	2
Figure 1.2	Schematic diagram of a ferroelectric hysteresis loop for (a) Single domain (b) Poly-domain sample [Jona et al. (1962)]	8
Figure 1.3	Types of Polarizations (a) electronic, (b) ionic, (c) dipole (d) interfacial [Dielectric Terminology Glosssary (2016)]	12
Figure 1.4	Schematic diagram of BaTiO ₃ perovskite structure [Popovici et al. (2011)]	16
Figure 3.1	A schematic flow chart of sample preparation and characterization	34
Figure 3.2	Schematic representation of reflection and transmission signals in SEM and TEM modes [West (2014)].	40
Figure 3.3	Principle of scanning electron microscope (SEM) [West (2014)].	41
Figure 3.4	Schematic diagram of complex impedance measurement [Novocontrol Manual (2016)].	42
Figure 3.5	Schematic diagram of a Sawyer-Tower circuit for P-E loop measurement [Stewart et al. (2014)].	44
Figure 4.1	(a) A parallel RC equivalent circuit model, (b) Normalized plot of Z''/ R vs. Z' / R, (c) Normalized plot of $M'' / (C_0/C)$ vs. $M'' / (C_0/C)$ for parallel RC circuit model.	53
Figure 4.2	(a) Equivalent circuit model containing a parallel combination of resistance R and CPE (b) Plot of Z''/R vs Z'/R for various values of θ , where θ is the angle between the Z' axis and the line joining the center of the arc to the origin. The centres for the arcs for $\theta = 10, 20, 30$ and 40^{0} in the figure are at (0.5,-0.009), (0.5,-0.182), (0.5,-0.289), (0.5,-0.419) respectively, (c) Plot of Y''/(1/R) vs. Y'/(1/R) (d) Plot of M''/ (C ₀ /A ₀) vs. M' / (C ₀ /A ₀) and (e) Plot of $\epsilon''/(A_0/C_0)$ vs $\epsilon'/(A_0/C_0)$. Values used for calculations are R=5 K Ω , A ₀ =6.014*10 ⁻⁶ and C ₀ =1.6*10 ⁻¹² F.	60

- **Figure 4.3** (a) Equivalent Circuit Model containing a series combination of 62 resistance R and CPE. (b) Z"/R vs. Z'/R plots (c) Y"R vs. Y'R plots (d) M"/(C_0/A_0) vs. M'/(C_0/A_0) plots and (e) ϵ "/(A_0/C_0) vs. ϵ '/(A_0/C_0) plots for various values of parameters. Values used for calculations are R=5 K Ω , A_0 =6.014*10⁻⁶ and C_0 =1.6*10⁻¹²F.
- **Figure 4.4** (a) Equivalent circuit model containing series combination of 64 parallel $R_1 - CPE_1$ and parallel $R_2 - CPE_2$. (b-d) Plot of Z"/R vs. Z'/R for various values of R_2/R_1 , τ_2/τ_1 , k (θ_2 =k θ_1) and θ_1 , where θ_1 is the angle between Z' axis and the line joining the origin to the centre ($\frac{R_1}{2}$, $-\frac{R_1}{2}$ tan θ_1) of the arc corresponding to the parallel combination R_1 - CPE₁. θ_2 is the angle between Z' axis and the line joining the point (R_1 ,0) to the centre ($\frac{R_2}{2}$, $-\frac{R_2}{2}$ tan θ_2) of the arc corresponding to the parallel combination R_2 -CPE₂ and (e) Plots of Y" (R_1 +R2) vs. Y' (R_1 +R₂) for various values of R_2/R_1 , τ_2/τ_1 , k (θ_2 =k θ_1) and θ_1 . Values used for calculations are R=5 K Ω , A_{01} =6.014*10⁻⁶ and C_0 =1.6*10⁻¹² F.
- Figure 4.4 (f,g) Plots of Y" (R₁+R2) vs. Y' (R₁+R₂) for various values of 65 (contd.) (f,g) Plots of Y" (R₁+R2) vs. Y' (R₁+R₂) for various values of R_2/R_1 , τ_2 / τ_1 , k (θ_2 =k θ_1) and θ_1 , (h-j) Plots of M"/(C₀/A₀₁ + C₀/A₀₂) vs. M'/(C₀/A₀₁ + C₀/A₀₂) for various values of R₂/R₁, τ_2 / τ_1 , k (θ_2 =k θ_1) and θ_1 and (k) Plot of ε "/[(1/C₀){C₁ (R₁/(R₁+R₂))² + C₂(R₂/(R₁+R₂))²}] vs. ε '/[(1/C₀){C₁ (R₁/(R₁+R₂))² + C₂(R₂/(R₁+R₂))²}] for various values of R₂/R₁, τ_2 / τ_1 , k (θ_2 =k θ_1) and θ_1 . Values used for calculations are R=5 KΩ, A₀₁=6.014*10⁻⁶ and C₀=1.6*10⁻¹² F.
- **Figure 4.5** (a) Equivalent circuit model containing series combination of parallel R_1C_1 , parallel R_2C_2 and CPE. Plots of (b) $Z''/(R_1+R_2)$ vs. $Z'/(R_1+R_2)$ for various values of R_2/R_1 , R_2C_2/R_1C_1 , A_0 and θ , where θ is the angle between Z' axis and the line showing the low frequency linear part corresponding to CPE and passing through the point (R_1+R_2 , 0) for various values of R_2/R_1 , R_2C_2/R_1C_1 , A_0 and θ .
- Figure 4.5 (c) $Z''(R_1+R_2)$ vs. $Z'(R_1+R_2)$ for various values of R_2/R_1 , 67 (contd.) (c) R_2C_2/R_1C_1 , A_0 and θ , where θ is the angle between Z axis and the line showing the low frequency linear part corresponding to CPE and passing through the point $(R_1+R_2, 0)$ (d) Y'' (R_1+R_2) vs. Y' (R_1+R_2) , (e) M'' $(C_0/C_1+C_0/C_2)$ vs. M' $(C_0/C_1+C_0/C_2)$ and (f) $\epsilon''/[(1/C_0)\{C_1(R_1/(R_1+R_2))^2+C_2(R_2/(R_1+R_2))^2\}]$ vs. $\epsilon'/[(1/C_0)\{C_1(R_1/(R_1+R_2))^2+C_2(R_2/(R_1+R_2))^2\}]$ for various values of R_2/R_1 , R_2C_2/R_1C_1 , A_0 and θ .
- **Figure 4.6** (a) Equivalent circuit model having series combination of parallel 69 R₁-CPE₁, R₂ and CPE₂. (b,c) Plot of Z''/(R₁+R₂) vs. Z'/(R₁+R₂) for various values of R₂/R₁, τ_2/τ_1 , θ_2/θ_1 and θ_1 where θ_1 is the angle between Z' axis and the line joining the highest frequency intercept point (R₂,0) to the point (R₂+0.5R₁, - 0.5R₁ tan θ_1), the center of the semi circular arc corresponding to parallel R₁-CPE₁

Figure 4.6 (contd.)	. (d-e) Plot of Y"/(1/R ₂) vs. Y'/(1/R ₂). (f)Plot of Y"/(1/R ₂) vs. Y'/(1/R ₂).(g,h)Plot of M"/(C ₀ /A ₀₁ +C ₀ /A ₀₂) vs. M'/(C ₀ /A ₀₁ +C ₀ /A ₀₂) and (i) Plot of ϵ "/(A ₀₂ /C ₀) vs ϵ '/(A ₀₂ /C ₀).	70
Figure 4.7	(a) Equivalent circuit model having a parallel combination R_2C_2 connected in series with parallel combination of and R_1 - C_1 and CPE ₁ . Plots of (b-d) Z''/(R_1 + R_2) vs. Z'/(R_1 + R_2) for various values of R_2/R_1 , R_2C_2/R_1C_1 , A_0 and θ for various values of R_2/R_1 , R_2C_2/R_1C_1 , A_0 and θ .	71
Figure 4.7 (contd.)	Plots of (e-f) Y'' (R ₁ +R ₂) vs. Y' (R ₁ +R ₂), (g,h) M''/(C ₀ /C ₁ +C ₀ /C ₂) vs. M'/(C ₀ /C ₁ +C ₀ /C ₂) and (i-j) $\epsilon''/[(C_1/C_0)(R_1/(R_1+R_2))^2+(C_2/C_0)(R_2/(R_1+R_2))^2]$ vs. $\epsilon'/[(C_1/C_0)(R_1/(R_1+R_2))^2+(C_2/C_0)(R_2/(R_1+R_2))^2]$ for various values of R ₂ /R ₁ , R ₂ C ₂ /R ₁ C ₁ , A ₀ and θ .	72
Figure 4.8	Experimental and fitted values of (a) Z'' , Z' vs. log f, (b) Z'' vs. Z' , (c) M'' , M' vs. log and (d) M'' vs. M' for ceramic system Ba ₁ . _x Sr _x TiO ₃ (x=0.35) by using the model shown in Figure 4.7(a).	76
Figure 5.1	(a) XRD patterns of $Ba_{1-x}Sr_xTiO_3$ (x = 0.15, 0.20, 0.25, 0.30 and 0.35), (b) Magnified peaks around 45.5 degree, Rietveld refinement for (c) x=0.15, (d) x=0.20, (e) x=0.25, (f) x=0.30 and (g) x=0.35.	83
Figure 5.2	Tetragonality (c/a) versus Strontium content.	84
Figure 5.3	SEM micrographs for $Ba_{1-x}Sr_xTiO_3$ (a) $x = 0.15$, (b) $x = 0.20$, (c) $x = 0.25$, (d) $x = 0.30$ and (e) $x=0.35$.	85
Figure 5.4	$Ba_{1-x}Sr_xTiO_3$ (x = 0.15) plots for (a) Permittivity (ϵ') vs. Temperature at various frequencies (b) Permittivity (ϵ') vs. log f at various temperature (c) Dielectric loss vs. Temperature at various frequencies (d) Dielectric loss vs. log f at various temperatures.	87
Figure 5.5	$Ba_{1-x}Sr_xTiO_3$ (x = 0.20) plots for (a) Permittivity (ϵ ') vs. Temperature at various frequencies (b) Permittivity (ϵ ') vs. log f at various temperature (c) Dielectric loss vs. Temperature at various frequencies (d) Dielectric loss vs. log f at various temperatures.	88
Figure 5.6	$Ba_{1-x}Sr_xTiO_3$ (x = 0.25) plots for (a) Permittivity (ϵ ') vs. Temperature at various frequencies (b) Permittivity (ϵ ') vs. log f at various temperature (c) Dielectric loss vs. Temperature at various frequencies (d) Dielectric loss vs. log f at various temperatures.	89
Figure 5.7	$Ba_{1-x}Sr_xTiO_3$ (x = 0.30) plots for (a) Permittivity (ϵ ') vs.	90

	Temperature at various frequencies (b) Permittivity (ϵ ') vs. log f at various temperature (c) Dielectric loss vs. Temperature at various frequencies (d) Dielectric loss vs. log f at various temperatures.	
Figure 5.8	$Ba_{1-x}Sr_xTiO_3$ (x = 0.35) plots for (a) Permittivity (ϵ ') vs. Temperature at various frequencies (b)Permittivity (ϵ ') vs. log f at various temperature (c) Dielectric loss vs. Temperature at various frequencies (d) Dielectric loss vs. log f at various temperatures.	91
Figure 5.9	Variation of T _m with Sr content	91
Figure 5.10	Inverse permittivity vs. temperature curve fitted according to Curie-Weiss law and $\ln(1/\epsilon' - 1/\epsilon'_m)$ vs. $\ln(T-T_m)$ curve fitted according to Modified Curie- Weiss law shown in inset for $Ba_{1-x}Sr_xTiO_3$ (a) x = 0.15, (b) x=0.20, (c) x=0.25 and (d) x=0.30.	93
Figure 5.11	Experimental and fitted plots of (a) Z'' vs. Z' (b) Z', Z'' vs. log f at 623 K for $Ba_{1-x}Sr_xTiO_3$ (x = 0.15)	98
Figure 5.12	Experimental and fitted plots of (a) Z'' vs. Z' (b) Z', Z'' vs. log f at 623 K for $Ba_{1-x}Sr_xTiO_3$ (x = 0.20)	98
Figure 5.13	Experimental and fitted plots of (a) Z'' vs. Z' (b) Z' , Z'' vs. log f at 623 K for $Ba_{1-x}Sr_xTiO_3$ (x = 0.25)	99
Figure 5.14	Experimental and fitted plots of (a) Z'' vs. Z' (b) Z', Z'' vs. log f at 623 K for $Ba_{1-x}Sr_xTiO_3$ (x = 0.30)	99
Figure 5.15	Experimental and fitted plots of (a) Z'' vs. Z' (b) Z' , Z'' vs. log f at 623 K for $Ba_{1-x}Sr_xTiO_3$ (x = 0.35)	100
Figure 5.16	Plots of $ln(R_1)$, $ln(R_2)$ and $ln(R_3)$ vs. 1000/T for BST30.	104
Figure 5.17	Variation of slope and intercept (obtained in Figure 5.16) with x (Sr content) for R_1 .	104
Figure 5.18	P-E Hysteresis loop for $Ba_{1-x}Sr_xTiO_3$ (a) $x = 0.15$, (b) $x = 0.20$, (c) $x = 0.25$, (d) $x = 0.30$ and (e) $x = 0.35$.	106
Figure 5.19	(a) Permittivity vs. frequency and (b) loss vs. frequency plots for $Ba_{1-x}Sr_xTiO_3$ for x = 0.15, 0.20, 0.25, 0.30 and 0.35 in X-Band.	107
Figure 6.1	(a) XRD patterns of $BaFe_xTi_{1-x}O_3$ (x = 0.03, 0.05 and 0.10), (b) Magnified peaks near 31.5 degree , where the right hand side peak corresponds to tetragonal phase (c) Rietveld refinement for x=0.03. Inset : magnified peaks around 31.5 degree.(d) Rietveld refinement for x=0.05. Inset : magnified peaks around 31.5 degree.	113

- Figure 6.1 (e) Rietveld refinement of x=0.10. Inset: magnified peaks around 114 (contd.) 31.5 degree. Figure 6.2 SEM micrographs and EDS spectra for $BaFe_{x}Ti_{1-x}O_{3}$ (a,b) 116 x=0.03, (c,d) x=0.05, and (e,f) x=0.10 samples. Figure 6.3 120 $BaFe_xTi_{1-x}O_3$ (x = 0.03) plots for (a) Permittivity (ϵ ') vs. Temperature for various frequencies (b) Permittivity (ϵ') vs. log f for various temperatures (c) Dielectric loss vs. Temperature for various frequencies (d) Dielectric loss vs. log f for various temperatures. 121 Figure 6.4 $BaFe_{x}Ti_{1-x}O_{3}$ (x = 0.05) plots for (a) Permittivity (ϵ ') vs. Temperature for various frequencies (b) Permittivity (ϵ') vs. log f for various temperatures (c) Dielectric loss vs. Temperature for various frequencies (d) Dielectric loss vs. log f for various temperatures. 122 Figure 6.5 BaFe_xTi_{1-x}O₃ (x = 0.10) plots for (a) Permittivity (ϵ ') vs. Temperature for various frequencies (b) Permittivity (ϵ) vs. log f for various temperatures (c) Dielectric loss vs. Temperature for various frequencies (d) Dielectric loss vs. log f for various temperatures. (a) Inverse permittivity vs. temperature curve fitted according to 124 Figure. 6.6 Curie-Weiss law for BaFe_xTi_{1-x}O₃ (x = 0.03). Inset: $\ln(1/\epsilon' - 1/\epsilon'_m)$ vs. ln(T-T_m) curve fitted according to Modified Curie-Weiss law (b) Inverse permittivity vs. temperature curve fitted according to Curie-Weiss law for BaFe_xTi_{1-x}O₃ (x = 0.05). Inset: $\ln(1/\epsilon' - 1/\epsilon')$ $1/\varepsilon'_{m}$) vs. ln(T-T_m) curve fitted according to modified Curie-Weiss law. Experimental and fitted plots of (a) M" vs. M' at 350K (b) M', Figure 6.7 126 M" vs. log f at 350 K (c) M" vs. M' at 550 K and (d) M', M" vs. log f at 550 K for BaFe_xTi_{1-x}O₃ (x=0.03). Figure 6.8 Experimental and fitted plots of (a) M" vs. M' at 350K (b) M', 127 M" vs. log f at 350 K (c) M" vs. M' at 550 K and (d) M', M" vs. log f at 550 K for $BaFe_xTi_{1-x}O_3$ (x = 0.05). (a) Permittivity vs. frequency and (b) loss vs. frequency plots for Figure 6.9 133 $BaFe_{x}Ti_{1-x}O_{3}$ for x = 0.03, 0.05 and 0.10 in X-Band. Figure 7.1 XRD patterns for $BaTi_{1-x}Sn_xO_3$ (x = 0.05, 0.10 and 0.15), (b) 140 Magnified peaks around 56 degree, Rietveld refinement for (c) x=0.05, (d) x=0.10 and (e) x=0.15 SEM micrographs for $BaTi_{1-x}Sn_xO_3$ (a) x = 0.05, (b) x = 0.10, (c) Figure 7.2 142 x = 0.15
 - Figure 7.3 (a) SEM micrographs, EDS spectra at (b) Overall area, (c) grain 143

	and (d) grain boundary for $BaTi_{1-x}Sn_xO_3$ (x = 0.05)	
Figure 7.4	(a) SEM micrographs, EDS spectra at (b) Overall area, (c) grain and (d) grain boundary for $BaTi_{1-x}Sn_xO_3$ (x = 0.10)	143
Figure 7.5	(a) SEM micrographs, EDS spectra of (b) Overall area, (c) grain and (d) grain boundary for $BaTi_{1-x}Sn_xO_3$ (x = 0.15)	144
Figure 7.6	BaTi _{1-x} Sn _x O ₃ (x = 0.05) plots of (a) Permittivity (ϵ ') vs. Temperature at Various frequencies (b) Permittivity (ϵ ') vs. log f at various temperature (c) Dielectric loss vs. Temperature at various frequencies (d) Dielectric loss vs. log f at various temperatures.	145
Figure 7.7	BaTi _{1-x} Sn _x O ₃ (x = 0.10) plots of (a) Permittivity (ϵ ') vs. Temperature at Various frequencies (b) Permittivity (ϵ ') vs. log f at various temperature (c) Dielectric loss vs. Temperature at various frequencies (d) Dielectric loss vs. log f at various temperatures.	146
Figure 7.8	BaTi _{1-x} Sn _x O ₃ (x = 0.15) plots of (a) Permittivity (ϵ ') vs. Temperature at various frequencies (b) Permittivity (ϵ ') vs. log f at various temperature (c) Dielectric loss vs. Temperature at various frequencies (d) Dielectric loss vs. log f at various temperatures.	147
Figure 7.9	Inverse permittivity vs. temperature curve fitted according to Curie-Weiss law and $\ln(1/\epsilon' - 1/\epsilon'_m)$ vs. $\ln(T-T_m)$ curve fitted according to Modified Curie-Weiss law shown in inset for BaTi _{1-x} Sn _x O ₃ (a) x = 0.05, (b) x=0.10.	149
Figure 7.10	Experimental and fitted plots of (a) Z'' vs. Z' (b) Z' , Z'' vs. log f at 573 K for BaTi _{1-x} Sn _x O ₃ (x = 0.05)	150
Figure 7.11	Experimental and fitted plots of (a) Z'' vs. Z' (b) Z' , Z'' vs. log f at 523 K for BaTi _{1-x} Sn _x O ₃ (x = 0.10)	150
Figure 7.12	Experimental and fitted plots of (a) Z'' vs. Z' and (b) Z' , Z'' vs. log f at 573 K for $BaTi_{1-x}Sn_xO_3$ ($x = 0.15$)	151
Figure 7.13	P-E Hysteresis loop for $BaTi_{1-x}Sn_xO_3$ (a) x = 0.05 and (b) x=0.10	155
Figure 7.14	Variation of (a) ϵ' as function of frequency and (b) loss as function of frequency for BaTi _{1-x} Sn _x O ₃ (x= 0.15) in X-Band (8 Ghz – 12 Ghz).	156
Figure 8.1	Schematic diagram of aperture coupled RDRA (a) 3-D view and (b) top view.	166
Figure 8.2	(a) Variation of reflection coefficient with frequency and (b) gain	167

for single RDRA.

- **Figure 8.3** (a) Design, (b) Variation of reflection coefficient with frequency 169 and (c) gain for aperture coupled array of three RDRAs with middle element parasitic.
- **Figure 9.1** (a) Recipe for obtaining equivalent circuit model involving CPE. 174

Figure 9.1(b, c) Recipe for obtaining equivalent circuit model involving175(contd.)CPE