LIST OF FIGURES

Figure 1.1 Schematic representation of general ferroelectric materials landscape.

Figure 1.2 Schematic diagram of a ferroelectric hysteresis loop for (a) Single domain (b) Poly-domain sample [Jona et al. (1962)]

Figure 1.3 Types of Polarizations (a) electronic, (b) ionic, (c) dipole (d) interfacial [Dielectric Terminology Glosssary (2016)]

Figure 1.4 Schematic diagram of BaTiO_{3} perovskite structure [Popovici et al. (2011)]

Figure 3.1 A schematic flow chart of sample preparation and characterization

Figure 3.2 Schematic representation of reflection and transmission signals in SEM and TEM modes [West (2014)].

Figure 3.3 Principle of scanning electron microscope (SEM) [West (2014)].

Figure 3.4 Schematic diagram of complex impedance measurement [Novocontrol Manual (2016)].

Figure 3.5 Schematic diagram of a Sawyer-Tower circuit for P-E loop measurement [Stewart et al. (2014)].

Figure 4.1 (a) A parallel RC equivalent circuit model, (b) Normalized plot of $Z^{\prime \prime} / \mathrm{R}$ vs. $\mathrm{Z}^{\prime} / \mathrm{R}$, (c) Normalized plot of $\mathrm{M}^{\prime \prime} /\left(\mathrm{C}_{0} / \mathrm{C}\right)$ vs. $\mathrm{M}^{\prime \prime}$ / $\left(\mathrm{C}_{0} / \mathrm{C}\right)$ for parallel RC circuit model.

Figure 4.2 (a) Equivalent circuit model containing a parallel combination of resistance R and CPE (b) Plot of $Z^{\prime \prime} / \mathrm{R}$ vs Z^{\prime} / R for various values of θ, where θ is the angle between the Z ' axis and the line joining the center of the arc to the origin. The centres for the arcs for $\theta=$ $10,20,30$ and 40° in the figure are at $(0.5,-0.009),(0.5,-0.182)$, ($0.5,-0.289$), ($0.5,-0.419$) respectively, (c) Plot of $\mathrm{Y} " /(1 / \mathrm{R})$ vs. $\mathrm{Y}^{\prime} /(1 / \mathrm{R})$ (d) Plot of $\mathrm{M}^{\prime \prime} /\left(\mathrm{C}_{0} / \mathrm{A}_{0}\right)$ vs. $\mathrm{M}^{\prime} /\left(\mathrm{C}_{0} / \mathrm{A}_{0}\right)$ and (e) Plot of $\varepsilon^{\prime \prime} /\left(\mathrm{A}_{0} / \mathrm{C}_{0}\right)$ vs $\varepsilon^{\prime} /\left(\mathrm{A}_{0} / \mathrm{C}_{0}\right)$. Values used for calculations are $\mathrm{R}=5$ $\mathrm{K} \Omega, \mathrm{A}_{0}=6.014 * 10^{-6}$ and $\mathrm{C}_{0}=1.6^{*} 10^{-12} \mathrm{~F}$.

Figure 4.3 (a) Equivalent Circuit Model containing a series combination of resistance R and CPE. (b) $Z^{\prime \prime} / R$ vs. Z^{\prime} / R plots (c) $Y " R$ vs. Y'R plots (d) $\mathrm{M}^{\prime \prime} /\left(\mathrm{C}_{0} / \mathrm{A}_{0}\right)$ vs. $\mathrm{M}^{\prime} /\left(\mathrm{C}_{0} / \mathrm{A}_{0}\right)$ plots and (e) $\varepsilon^{\prime \prime} /\left(\mathrm{A}_{0} / \mathrm{C}_{0}\right)$ vs. $\varepsilon^{\prime} /\left(\mathrm{A}_{0} / \mathrm{C}_{0}\right)$ plots for various values of parameters. Values used for calculations are $\mathrm{R}=5 \mathrm{~K} \Omega, \mathrm{~A}_{0}=6.014^{*} 10^{-6}$ and $\mathrm{C}_{0}=1.6 * 10^{-12} \mathrm{~F}$.

Figure 4.4 (a) Equivalent circuit model containing series combination of parallel $\mathrm{R}_{1}-\mathrm{CPE}_{1}$ and parallel $\mathrm{R}_{2}-\mathrm{CPE}_{2}$. (b-d) Plot of $\mathrm{Z}^{\prime \prime} / \mathrm{R}$ vs. $Z 1 / R$ for various values of $R_{2} / R_{1}, \tau_{2} / \tau_{1}, k\left(\theta_{2}=k \theta_{1}\right)$ and θ_{1}, where θ_{1} is the angle between Z^{\prime} axis and the line joining the origin to the centre $\left(\frac{\mathrm{R}_{1}}{2},-\frac{\mathrm{R}_{1}}{2} \tan \theta_{1}\right)$ of the arc corresponding to the parallel combination $\mathrm{R}_{1}-\mathrm{CPE}_{1} . \theta_{2}$ is the angle between Z^{\prime} axis and the line joining the point $\left(\mathrm{R}_{1}, 0\right)$ to the centre $\left(\frac{\mathrm{R}_{2}}{2},-\frac{\mathrm{R}_{2}}{2} \tan \theta_{2}\right)$ of the arc corresponding to the parallel combination $\mathrm{R}_{2}-\mathrm{CPE}_{2}$ and (e) Plots of $Y^{\prime \prime}\left(R_{1}+R 2\right)$ vs. $\mathrm{Y}^{\prime}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$ for various values of $\mathrm{R}_{2} / \mathrm{R}_{1}$, $\tau_{2} / \tau_{1}, \mathrm{k}\left(\theta_{2}=\mathrm{k} \theta_{1}\right)$ and θ_{1}. Values used for calculations are $\mathrm{R}=5 \mathrm{~K} \Omega$, $\mathrm{A}_{01}=6.014 * 10^{-6}$ and $\mathrm{C}_{0}=1.6 * 10^{-12} \mathrm{~F}$.

Figure 4.4 (f, g) Plots of $\mathrm{Y}^{\prime \prime}\left(\mathrm{R}_{1}+\mathrm{R} 2\right)$ vs. $\mathrm{Y}^{\prime}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$ for various values of (contd.) $\quad \mathrm{R}_{2} / \mathrm{R}_{1}, \tau_{2} / \tau_{1}, \mathrm{k}\left(\theta_{2}=\mathrm{k} \theta_{1}\right)$ and θ_{1}, $(\mathrm{h}-\mathrm{j})$ Plots of $\mathrm{M}^{\prime \prime} /\left(\mathrm{C}_{0} / \mathrm{A}_{01}+\right.$ $\left.\mathrm{C}_{0} / \mathrm{A}_{02}\right)$ vs. $\mathrm{M}^{\prime} /\left(\mathrm{C}_{0} / \mathrm{A}_{01}+\mathrm{C}_{0} / \mathrm{A}_{02}\right)$ for various values of $\mathrm{R}_{2} / \mathrm{R}_{1}, \tau_{2} /$ $\tau_{1}, k\left(\theta_{2}=k \theta_{1}\right)$ and θ_{1} and (k) Plot of $\varepsilon^{\prime \prime} /\left[\left(1 / C_{0}\right)\left\{\mathrm{C}_{1}\left(\mathrm{R}_{1} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)\right)^{2}\right.\right.$ $\left.\left.+\mathrm{C}_{2}\left(\mathrm{R}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)\right)^{2}\right\}\right] \quad$ vs. $\varepsilon^{\prime} /\left[\left(1 / \mathrm{C}_{0}\right)\left\{\mathrm{C}_{1} \quad\left(\mathrm{R}_{1} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)\right)^{2}+\mathrm{C}_{2}\right.\right.$ $\left.\left.\left(\mathrm{R}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)\right)^{2}\right\}\right]$ for various values of $\mathrm{R}_{2} / \mathrm{R}_{1}, \tau_{2} / \tau_{1}, \mathrm{k}\left(\theta_{2}=\mathrm{k} \theta_{1}\right)$ and θ_{1}. Values used for calculations are $\mathrm{R}=5 \mathrm{~K} \Omega, \mathrm{~A}_{01}=6.014 * 10^{-6}$ and $\mathrm{C}_{0}=1.6 * 10^{-12} \mathrm{~F}$.

Figure 4.5 (a) Equivalent circuit model containing series combination of parallel $R_{1} C_{1}$, parallel $R_{2} C_{2}$ and CPE. Plots of (b) $Z " /\left(R_{1}+R_{2}\right)$ vs. $Z^{\prime} /\left(R_{1}+R_{2}\right)$ for various values of $R_{2} / R_{1}, R_{2} C_{2} / R_{1} C_{1}, A_{0}$ and θ, where θ is the angle between Z ' axis and the line showing the low frequency linear part corresponding to CPE and passing through the point ($\mathrm{R}_{1}+\mathrm{R}_{2}, 0$) for various values of $\mathrm{R}_{2} / \mathrm{R}_{1}$, $\mathrm{R}_{2} \mathrm{C}_{2} / \mathrm{R}_{1} \mathrm{C}_{1}, \mathrm{~A}_{0}$ and θ.

Figure 4.5 (c) $Z^{\prime \prime} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$ vs. $\mathrm{Z}^{\prime} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$ for various values of $\mathrm{R}_{2} / \mathrm{R}_{1}$, (contd.) $\quad \mathrm{R}_{2} \mathrm{C}_{2} / \mathrm{R}_{1} \mathrm{C}_{1}, \mathrm{~A}_{0}$ and θ, where θ is the angle between Z^{\prime} axis and the line showing the low frequency linear part corresponding to CPE and passing through the point $\left(\mathrm{R}_{1}+\mathrm{R}_{2}, 0\right)$ (d) $\mathrm{Y}^{\prime \prime}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$ vs. $\mathrm{Y}^{\prime}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$, (e) $\mathrm{M}^{\prime \prime} /\left(\mathrm{C}_{0} / \mathrm{C}_{1}+\mathrm{C}_{0} / \mathrm{C}_{2}\right)$ vs. $\mathrm{M}^{\prime} /\left(\mathrm{C}_{0} / \mathrm{C}_{1}+\mathrm{C}_{0} / \mathrm{C}_{2}\right)$ and (f) $\varepsilon^{\prime \prime} /\left[\left(1 / \mathrm{C}_{0}\right)\left\{\mathrm{C}_{1}\left(\mathrm{R}_{1} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)\right)^{2}+\mathrm{C}_{2}\left(\mathrm{R}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)\right)^{2}\right\}\right]$ vs. $\varepsilon^{\prime} /\left[\left(1 / \mathrm{C}_{0}\right)\left\{\mathrm{C}_{1}\right.\right.$ $\left.\left.\left(\mathrm{R}_{1} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)\right)^{2}+\mathrm{C}_{2}\left(\mathrm{R}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)\right)^{2}\right\}\right]$ for various values of $\mathrm{R}_{2} / \mathrm{R}_{1}$, $\mathrm{R}_{2} \mathrm{C}_{2} / \mathrm{R}_{1} \mathrm{C}_{1}, \mathrm{~A}_{0}$ and θ.

Figure 4.6 (a) Equivalent circuit model having series combination of parallel $\mathrm{R}_{1}-\mathrm{CPE}_{1}, \mathrm{R}_{2}$ and CPE_{2}. (b,c) Plot of $\mathrm{Z}^{\prime \prime} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$ vs. $\mathrm{Z}^{\prime} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$ for various values of $R_{2} / R_{1}, \tau_{2} / \tau_{1}, \theta_{2} / \theta_{1}$ and θ_{1} where θ_{1} is the angle between Z^{\prime} axis and the line joining the highest frequency intercept point ($\mathrm{R}_{2}, 0$) to the point ($\mathrm{R}_{2}+0.5 \mathrm{R}_{1},-0.5 \mathrm{R}_{1} \tan \theta_{1}$), the center of the semi circular arc corresponding to parallel $\mathrm{R}_{1}-\mathrm{CPE}_{1}$
. (d-e) Plot of $\mathrm{Y}^{\prime \prime} /\left(1 / \mathrm{R}_{2}\right)$ vs. $\mathrm{Y}^{\prime} /\left(1 / \mathrm{R}_{2}\right)$.
Figure 4.6 (f)Plot of $\mathrm{Y}^{\prime \prime} /\left(1 / \mathrm{R}_{2}\right)$ vs. $\mathrm{Y}^{\prime} /\left(1 / \mathrm{R}_{2}\right) .(\mathrm{g}, \mathrm{h})$ Plot of $\mathrm{M}^{\prime \prime} /\left(\mathrm{C}_{0} / \mathrm{A}_{01}+\mathrm{C}_{0} / \mathrm{A}_{02}\right)$ (contd.) vs. $\mathrm{M}^{\prime} /\left(\mathrm{C}_{0} / \mathrm{A}_{01}+\mathrm{C}_{0} / \mathrm{A}_{02}\right)$ and (i) Plot of $\varepsilon \varepsilon^{\prime \prime} /\left(\mathrm{A}_{02} / \mathrm{C}_{0}\right)$ vs $\varepsilon^{\prime} /\left(\mathrm{A}_{02} / \mathrm{C}_{0}\right)$.

Figure 4.7 (a) Equivalent circuit model having a parallel combination $\mathrm{R}_{2} \mathrm{C}_{2}$ connected in series with parallel combination of and $\mathrm{R}_{1}-\mathrm{C}_{1}$ and CPE_{1}. Plots of (b-d) $\mathrm{Z}^{\prime \prime} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$ vs. $\mathrm{Z}^{\prime} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$ for various values of $R_{2} / R_{1}, R_{2} C_{2} / R_{1} C_{1}, A_{0}$ and θ for various values of R_{2} / R_{1}, $\mathrm{R}_{2} \mathrm{C}_{2} / \mathrm{R}_{1} \mathrm{C}_{1}, \mathrm{~A}_{0}$ and θ.

Figure 4.7 Plots of (e-f) $\mathrm{Y}^{\prime \prime}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$ vs. $\mathrm{Y}^{\prime}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$, (g,h) $\mathrm{M}^{\prime \prime} /\left(\mathrm{C}_{0} / \mathrm{C}_{1}+\mathrm{C}_{0} / \mathrm{C}_{2}\right)$ (contd.) vs. $\mathrm{M}^{\prime} /\left(\mathrm{C}_{0} / \mathrm{C}_{1}+\mathrm{C}_{0} / \mathrm{C}_{2}\right)$ and (i-j) $\varepsilon^{\prime \prime} /\left[\left(\mathrm{C}_{1} / \mathrm{C}_{0}\right)\left(\mathrm{R}_{1} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)\right)^{2}+\left(\mathrm{C}_{2} / \mathrm{C}_{0}\right)\left(\mathrm{R}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)\right)^{2}\right]$ vs. $\varepsilon^{\prime} /\left[\left(\mathrm{C}_{1} / \mathrm{C}_{0}\right)\left(\mathrm{R}_{1} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)\right)^{2}+\left(\mathrm{C}_{2} / \mathrm{C}_{0}\right)\left(\mathrm{R}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)\right)^{2}\right]$ for various values of $\mathrm{R}_{2} / \mathrm{R}_{1}, \mathrm{R}_{2} \mathrm{C}_{2} / \mathrm{R}_{1} \mathrm{C}_{1}, \mathrm{~A}_{0}$ and θ.

Figure 4.8 Experimental and fitted values of (a) $Z^{\prime \prime}, Z^{\prime}$ vs. $\log \mathrm{f}$, (b) $Z^{\prime \prime}$ vs. Z^{\prime}, (c) $\mathrm{M}^{\prime \prime}$, M^{\prime} vs. \log and (d) $\mathrm{M}^{\prime \prime}$ vs. M^{\prime} for ceramic system Ba_{1} ${ }_{x} \mathrm{Sr}_{\mathrm{x}} \mathrm{TiO}_{3}(\mathrm{x}=0.35)$ by using the model shown in Figure 4.7(a).

Figure 5.1 (a) XRD patterns of $\mathrm{Ba}_{1-\mathrm{x}} \mathrm{Sr}_{\mathrm{x}} \mathrm{TiO}_{3}(\mathrm{x}=0.15,0.20,0.25,0.30$ and 0.35), (b) Magnified peaks around 45.5 degree, Rietveld refinement for (c) $x=0.15$, (d) $x=0.20$, (e) $x=0.25$, (f) $x=0.30$ and (g) $x=0.35$.

Figure 5.2 Tetragonality (c/a) versus Strontium content.

Figure 5.3 SEM micrographs for $\mathrm{Ba}_{1-\mathrm{x}} \mathrm{Sr}_{\mathrm{x}} \mathrm{TiO}_{3}$ (a) $\mathrm{x}=0.15$, (b) $\mathrm{x}=0.20$, (c)85 $x=0.25$, (d) $x=0.30$ and (e) $x=0.35$.

Figure 5.4 $\mathrm{Ba}_{1-\mathrm{x}} \mathrm{Sr}_{\mathrm{x}} \mathrm{TiO}_{3}(\mathrm{x}=0.15)$ plots for (a) Permittivity $\left(\varepsilon^{\prime}\right)$ vs. Temperature at various frequencies (b) Permittivity (ε^{\prime}) vs. $\log \mathrm{f}$ at various temperature (c) Dielectric loss vs. Temperature at various frequencies (d) Dielectric loss vs. $\log \mathrm{f}$ at various temperatures.

Figure 5.5 $\quad \mathrm{Ba}_{1-\mathrm{x}} \mathrm{Sr}_{\mathrm{x}} \mathrm{TiO}_{3}(\mathrm{x}=0.20)$ plots for (a) Permittivity $\left(\varepsilon^{\prime}\right)$ vs.
Temperature at various frequencies (b) Permittivity (ε^{\prime}) vs. $\log \mathrm{f}$ at various temperature (c) Dielectric loss vs. Temperature at various frequencies (d) Dielectric loss vs. $\log \mathrm{f}$ at various temperatures.

Figure 5.6 $\quad \mathrm{Ba}_{1-\mathrm{x}} \mathrm{Sr}_{\mathrm{x}} \mathrm{TiO}_{3}(\mathrm{x}=0.25)$ plots for (a) Permittivity $\left(\varepsilon^{\prime}\right)$ vs. Temperature at various frequencies (b) Permittivity (ε^{\prime}) vs. $\log \mathrm{f}$ at various temperature (c) Dielectric loss vs. Temperature at various frequencies (d) Dielectric loss vs. $\log \mathrm{f}$ at various temperatures.

Figure 5.7 $\mathrm{Ba}_{1-\mathrm{x}} \mathrm{Sr}_{\mathrm{x}} \mathrm{TiO}_{3}(\mathrm{x}=0.30)$ plots for (a) Permittivity $\left(\varepsilon^{\prime}\right)$ vs.

Temperature at various frequencies (b) Permittivity (ε^{\prime}) vs. $\log \mathrm{f}$ at various temperature (c) Dielectric loss vs. Temperature at various frequencies (d) Dielectric loss vs. $\log \mathrm{f}$ at various temperatures.

Figure 5.8 $\quad \mathrm{Ba}_{1-\mathrm{x}} \mathrm{Sr}_{\mathrm{x}} \mathrm{TiO}_{3}(\mathrm{x}=0.35)$ plots for (a) Permittivity $\left(\varepsilon^{\prime}\right)$ vs. Temperature at various frequencies (b)Permittivity (ε^{\prime}) vs. $\log \mathrm{f}$ at various temperature (c) Dielectric loss vs. Temperature at various frequencies (d) Dielectric loss vs. $\log \mathrm{f}$ at various temperatures.

Figure 5.9 Variation of T_{m} with Sr content
Figure 5.10 Inverse permittivity vs. temperature curve fitted according to Curie-Weiss law and $\ln \left(1 / \varepsilon^{\prime}-1 / \varepsilon_{\mathrm{m}}^{\prime}\right)$ vs. $\ln \left(\mathrm{T}-\mathrm{T}_{\mathrm{m}}\right)$ curve fitted according to Modified Curie- Weiss law shown in inset for $\mathrm{Ba}_{1-\mathrm{x}} \mathrm{Sr}_{\mathrm{x}} \mathrm{TiO}_{3}$ (a) $\mathrm{x}=0.15$, (b) $\mathrm{x}=0.20$, (c) $\mathrm{x}=0.25$ and (d) $\mathrm{x}=0.30$.

Figure 5.11 Experimental and fitted plots of (a) $Z^{\prime \prime}$ vs. Z^{\prime} (b) $Z^{\prime}, Z^{\prime \prime}$ vs. $\log \mathrm{f}$ at 623 K for $\mathrm{Ba}_{1-\mathrm{x}} \mathrm{Sr}_{\mathrm{x}} \mathrm{TiO}_{3}(\mathrm{x}=0.15)$

Figure 5.12 Experimental and fitted plots of (a) $Z^{\prime \prime}$ vs. Z^{\prime} (b) $Z^{\prime}, Z^{\prime \prime}$ vs. $\log \mathrm{f}$ at 623 K for $\mathrm{Ba}_{1-\mathrm{x}} \mathrm{Sr}_{\mathrm{x}} \mathrm{TiO}_{3}(\mathrm{x}=0.20)$

Figure 5.13 Experimental and fitted plots of (a) $Z^{\prime \prime}$ vs. Z^{\prime} (b) $Z^{\prime}, Z^{\prime \prime}$ vs. $\log \mathrm{f}$ at 623 K for $\mathrm{Ba}_{1-\mathrm{x}} \mathrm{Sr}_{\mathrm{x}} \mathrm{TiO}_{3}(\mathrm{x}=0.25)$

Figure 5.14 Experimental and fitted plots of (a) $Z^{\prime \prime}$ vs. Z^{\prime} (b) $Z^{\prime}, Z^{\prime \prime}$ vs. $\log f$ at 623 K for $\mathrm{Ba}_{1-\mathrm{x}} \mathrm{Sr}_{\mathrm{x}} \mathrm{TiO}_{3}(\mathrm{x}=0.30)$

Figure 5.15 Experimental and fitted plots of (a) $Z^{\prime \prime}$ vs. Z^{\prime} (b) $Z^{\prime}, Z^{\prime \prime}$ vs. $\log \mathrm{f}$ at 623 K for $\mathrm{Ba}_{1-\mathrm{x}} \mathrm{Sr}_{\mathrm{x}} \mathrm{TiO}_{3}(\mathrm{x}=0.35)$

Figure 5.16 Plots of $\ln \left(R_{1}\right), \ln \left(R_{2}\right)$ and $\ln \left(R_{3}\right)$ vs. $1000 / T$ for $B S T 30$.
Figure 5.17 Variation of slope and intercept (obtained in Figure 5.16) with x (Sr content) for R_{1}.

Figure 5.18 P-E Hysteresis loop for $\mathrm{Ba}_{1-\mathrm{x}} \mathrm{Sr}_{\mathrm{x}} \mathrm{TiO}_{3}$ (a) $\mathrm{x}=0.15$, (b) $\mathrm{x}=0.20$, (c) $x=0.25$, (d) $x=0.30$ and (e) $x=0.35$.

Figure 5.19 (a) Permittivity vs. frequency and (b) loss vs. frequency plots for $\mathrm{Ba}_{1-\mathrm{x}} \mathrm{Sr}_{\mathrm{x}} \mathrm{TiO}_{3}$ for $\mathrm{x}=0.15,0.20,0.25,0.30$ and 0.35 in X -Band.

Figure 6.1 (a) XRD patterns of $\mathrm{BaFe}_{\mathrm{x}} \mathrm{Ti}_{1-\mathrm{x}} \mathrm{O}_{3}(\mathrm{x}=0.03,0.05$ and 0.10$)$,
(b) Magnified peaks near 31.5 degree, where the right hand side peak corresponds to tetragonal phase (c) Rietveld refinement for $x=0.03$. Inset : magnified peaks around 31.5 degree.(d) Rietveld refinement for $\mathrm{x}=0.05$. Inset : magnified peaks around 31.5 degree.

Figure 6.1 (e) Rietveld refinement of $x=0.10$. Inset: magnified peaks around (contd.) 31.5 degree.
Figure 6.2 SEM micrographs and EDS spectra for $\mathrm{BaFe}_{\mathrm{x}} \mathrm{Ti}_{1-\mathrm{x}} \mathrm{O}_{3}(\mathrm{a}, \mathrm{b}) 116$ $x=0.03$, (c,d) $x=0.05$, and (e,f) $x=0.10$ samples.

Figure $6.3 \mathrm{BaFe}_{\mathrm{x}} \mathrm{Ti}_{1-\mathrm{x}} \mathrm{O}_{3}(\mathrm{x}=0.03)$ plots for (a) Permittivity $\left(\varepsilon^{\prime}\right)$ vs. Temperature for various frequencies (b) Permittivity (ε^{\prime}) vs. \log f for various temperatures (c) Dielectric loss vs. Temperature for various frequencies (d) Dielectric loss vs. $\log \mathrm{f}$ for various temperatures.

Figure 6.4 $\mathrm{BaFe}_{\mathrm{x}} \mathrm{Ti}_{1-\mathrm{x}} \mathrm{O}_{3}(\mathrm{x}=0.05)$ plots for (a) Permittivity (ε^{\prime}) vs. Temperature for various frequencies (b) Permittivity (ε^{\prime}) vs. $\log \mathrm{f}$ for various temperatures (c) Dielectric loss vs. Temperature for various frequencies (d) Dielectric loss vs. $\log \mathrm{f}$ for various temperatures.

Figure 6.5 $\quad \mathrm{BaFe}_{\mathrm{x}} \mathrm{Ti}_{1-\mathrm{x}} \mathrm{O}_{3}(\mathrm{x}=0.10)$ plots for (a) Permittivity $\left(\varepsilon^{\prime}\right)$ vs.
Temperature for various frequencies (b) Permittivity (ε^{\prime}) vs. \log f for various temperatures (c) Dielectric loss vs. Temperature for various frequencies (d) Dielectric loss vs. $\log \mathrm{f}$ for various temperatures.

Figure. 6.6 (a) Inverse permittivity vs. temperature curve fitted according to Curie-Weiss law for $\mathrm{BaFe}_{\mathrm{x}} \mathrm{Ti}_{1-\mathrm{x}} \mathrm{O}_{3}(\mathrm{x}=0.03)$. Inset: $\ln \left(1 / \varepsilon^{\prime}-1 / \varepsilon^{\prime}{ }_{\mathrm{m}}\right)$ vs. $\ln \left(\mathrm{T}-\mathrm{T}_{\mathrm{m}}\right)$ curve fitted according to Modified Curie-Weiss law (b) Inverse permittivity vs. temperature curve fitted according to Curie-Weiss law for $\mathrm{BaFe}_{\mathrm{x}} \mathrm{Ti}_{1-\mathrm{x}} \mathrm{O}_{3}(\mathrm{x}=0.05)$. Inset: $\ln \left(1 / \varepsilon^{\prime}-\right.$ $\left.1 / \varepsilon_{m}^{\prime}\right)$ vs. $\ln \left(T-T_{m}\right)$ curve fitted according to modified CurieWeiss law.

Figure 6.7 Experimental and fitted plots of (a) $\mathrm{M}^{\prime \prime}$ vs. M^{\prime} at 350 K (b) M^{\prime}, $\mathrm{M}^{\prime \prime}$ vs. $\log \mathrm{f}$ at 350 K (c) $\mathrm{M}^{\prime \prime}$ vs. M^{\prime} at 550 K and (d) $\mathrm{M}^{\prime}, \mathrm{M}^{\prime \prime}$ vs. $\log \mathrm{f}$ at 550 K for $\mathrm{BaFe}_{\mathrm{x}} \mathrm{Ti}_{1-\mathrm{x}} \mathrm{O}_{3}(\mathrm{x}=0.03)$.

Figure 6.8 Experimental and fitted plots of (a) $\mathrm{M}^{\prime \prime}$ vs. M^{\prime} at 350 K (b) M^{\prime}, $\mathrm{M}^{\prime \prime}$ vs. $\log \mathrm{f}$ at 350 K (c) $\mathrm{M}^{\prime \prime}$ vs. M^{\prime} at 550 K and (d) $\mathrm{M}^{\prime}, \mathrm{M}^{\prime \prime}$ vs. $\log \mathrm{f}$ at 550 K for $\mathrm{BaFe}_{\mathrm{x}} \mathrm{Ti}_{1-\mathrm{x}} \mathrm{O}_{3}(\mathrm{x}=0.05)$.

Figure 6.9 (a) Permittivity vs. frequency and (b) loss vs. frequency plots for $\mathrm{BaFe}_{\mathrm{x}} \mathrm{Ti}_{1-\mathrm{x}} \mathrm{O}_{3}$ for $\mathrm{x}=0.03,0.05$ and 0.10 in X -Band.

Figure 7.1 \quad XRD patterns for $\mathrm{BaTi}_{1-\mathrm{x}} \mathrm{Sn}_{\mathrm{x}} \mathrm{O}_{3}(\mathrm{x}=0.05,0.10$ and 0.15), (b) Magnified peaks around 56 degree, Rietveld refinement for (c) $x=0.05$, (d) $x=0.10$ and (e) $x=0.15$

Figure 7.2 SEM micrographs for $\mathrm{BaTi}_{1-\mathrm{x}} \mathrm{Sn}_{\mathrm{x}} \mathrm{O}_{3}$ (a) $\mathrm{x}=0.05$, (b) $\mathrm{x}=0.10$, (c) $\mathrm{x}=0.15$

Figure 7.3 (a) SEM micrographs, EDS spectra at (b) Overall area, (c) grain
and (d) grain boundary for $\mathrm{BaTi}_{1-\mathrm{x}} \mathrm{Sn}_{\mathrm{x}} \mathrm{O}_{3}(\mathrm{x}=0.05)$
Figure 7.4 (a) SEM micrographs, EDS spectra at (b) Overall area, (c) grain and (d) grain boundary for $\mathrm{BaTi}_{1-\mathrm{x}} \mathrm{Sn}_{\mathrm{x}} \mathrm{O}_{3}(\mathrm{x}=0.10)$

Figure 7.5 (a) SEM micrographs, EDS spectra of (b) Overall area, (c) grain and (d) grain boundary for $\mathrm{BaTi}_{1-\mathrm{x}} \mathrm{Sn}_{\mathrm{x}} \mathrm{O}_{3}(\mathrm{x}=0.15)$

Figure 7.6 $\mathrm{BaTi}_{1-\mathrm{x}} \mathrm{Sn}_{\mathrm{x}} \mathrm{O}_{3}(\mathrm{x}=0.05)$ plots of (a) Permittivity $\left(\varepsilon^{\prime}\right)$ vs. Temperature at Various frequencies (b) Permittivity (ε^{\prime}) vs. $\log \mathrm{f}$ at various temperature (c) Dielectric loss vs. Temperature at various frequencies (d) Dielectric loss vs. $\log \mathrm{f}$ at various temperatures.

Figure 7.7 $\mathrm{BaTi}_{1-\mathrm{x}} \mathrm{Sn}_{\mathrm{x}} \mathrm{O}_{3}(\mathrm{x}=0.10)$ plots of (a) Permittivity $\left(\varepsilon^{\prime}\right)$ vs.
Temperature at Various frequencies (b) Permittivity (ε^{\prime}) vs. $\log \mathrm{f}$ at various temperature (c) Dielectric loss vs. Temperature at various frequencies (d) Dielectric loss vs. $\log f$ at various temperatures.

Figure 7.8 $\mathrm{BaTi}_{1-\mathrm{x}} \mathrm{Sn}_{\mathrm{x}} \mathrm{O}_{3}(\mathrm{x}=0.15)$ plots of (a) Permittivity $\left(\varepsilon^{\prime}\right)$ vs. Temperature at various frequencies (b) Permittivity (ε^{\prime}) vs. $\log f$ at various temperature (c) Dielectric loss vs. Temperature at various frequencies (d) Dielectric loss vs. $\log \mathrm{f}$ at various temperatures.

Figure 7.9 Inverse permittivity vs. temperature curve fitted according to Curie-Weiss law and $\ln \left(1 / \varepsilon^{\prime}-1 / \varepsilon^{\prime}{ }_{\mathrm{m}}\right)$ vs. $\ln \left(\mathrm{T}-\mathrm{T}_{\mathrm{m}}\right)$ curve fitted according to Modified Curie-Weiss law shown in inset for $\mathrm{BaTi}_{1-\mathrm{x}} \mathrm{Sn}_{\mathrm{x}} \mathrm{O}_{3}$ (a) $\mathrm{x}=0.05$, (b) $\mathrm{x}=0.10$.

Figure 7.10 Experimental and fitted plots of (a) $Z^{\prime \prime}$ vs. Z^{\prime} (b) $Z^{\prime}, Z^{\prime \prime}$ vs. $\log f$ at 573 K for $\mathrm{BaTi}_{1-\mathrm{x}} \mathrm{Sn}_{\mathrm{x}} \mathrm{O}_{3}(\mathrm{x}=0.05)$

Figure 7.11 Experimental and fitted plots of (a) $Z^{\prime \prime}$ vs. Z^{\prime} (b) $Z^{\prime}, Z^{\prime \prime}$ vs. $\log \mathrm{f}$ at 523 K for $\mathrm{BaTi}_{1-\mathrm{x}} \mathrm{Sn}_{\mathrm{x}} \mathrm{O}_{3}(\mathrm{x}=0.10)$

Figure 7.12 Experimental and fitted plots of (a) $Z^{\prime \prime}$ vs. Z^{\prime} and (b) $Z^{\prime}, Z^{\prime \prime}$ vs. 151 $\log \mathrm{f}$ at 573 K for $\mathrm{BaTi}_{1-\mathrm{x}} \mathrm{Sn}_{\mathrm{x}} \mathrm{O}_{3}(\mathrm{x}=0.15)$

Figure 7.13 P-E Hysteresis loop for $\mathrm{BaTi}_{1-\mathrm{x}} \mathrm{Sn}_{\mathrm{x}} \mathrm{O}_{3}$ (a) $\mathrm{x}=0.05$ and (b) $\mathrm{x}=0.10$
Figure 7.14 Variation of (a) ε^{\prime} as function of frequency and (b) loss as function of frequency for $\mathrm{BaTi}_{1-\mathrm{x}} \mathrm{Sn}_{\mathrm{x}} \mathrm{O}_{3}(\mathrm{x}=0.15)$ in X -Band (8 Ghz-12 Ghz).

Figure 8.1 Schematic diagram of aperture coupled RDRA (a) 3-D view and (b) top view.

Figure 8.2 (a) Variation of reflection coefficient with frequency and (b) gain
for single RDRA.
$\begin{array}{lll}\text { Figure 8.3 } & \begin{array}{l}\text { (a) Design, (b) Variation of reflection coefficient with frequency } \\ \text { and (c) gain for aperture coupled array of three RDRAs with } \\ \text { middle element parasitic. }\end{array}\end{array}$
Figure 9.1 (a) Recipe for obtaining equivalent circuit model involving CPE. 174
Figure 9.1 (b, c) Recipe for obtaining equivalent circuit model involving 175 (contd.) CPE

