APPENDIX A

Consider that a wave , which is initially travelling in air (permittivity ε_{0}, permeability μ_{0}, characteristic impedance Z_{0}) in a waveguide along z - direction, strikes the sample AB having permittivity ε, permeability μ and characteristic impedance Z.

Figure A. 1 Sketch showing reflection and transmission of electromagnetic wave propagating in Z direction and striking a dielectric medium of length 1 [Keysight (2016)].

The wave sees a mismatched load and suffers partial reflection and transmission at the air-sample interface. The reflection coefficient, assuming that the load is of infinite extent, is give as [Tripathi (2015); Baker-Jarvis et al. (1993); Hayt et al. (2012); Nicolson et al.(1979); Sadiku (2007)]

$$
\begin{equation*}
\Gamma=\frac{z-z_{0}}{z+z_{0}}=\frac{\mu / \gamma-\mu_{0} / \gamma_{0}}{\mu / \gamma+\mu_{0} / \gamma_{0}} \tag{A.1}
\end{equation*}
$$

where γ and γ_{0} are the propagation constants for the fundamental TE_{10} mode in the waveguide filled with the material and air respectively. μ and μ_{0} are the permeability of the sample and air respectively.

If the amplitude of the wave incident at the air-sample interface A is V , the amplitude of the reflected wave would be $\mathrm{V} \Gamma_{1}$ where $\Gamma_{1}=\Gamma$. The transmitted amplitude at A would be $\mathrm{V}\left(1+\Gamma_{1}\right)$ which would get attenuated by a factor $\xi=\mathrm{e}^{-\gamma \mathrm{z}}$ as the wave traverses the medium along z direction. If the thickness of the sample is ' d ' (ie the sample extends from plane A to plane B where $\mathrm{AB}=\mathrm{d}$), the amplitude at B would be $V\left(1+\Gamma_{1}\right) \xi$ where ξ is the transmission coefficient between faces A and B . At B, which is a material - air interface, the wave sees an impedance mismatch and is, therefore partly reflected with reflection coefficient Γ_{2} where $\Gamma_{2}=-\Gamma$. Thus we have (i) a reflected wave of amplitude $\mathrm{V}\left(1+\Gamma_{1}\right) \xi \Gamma_{2}$ starting at B travelling towards A and (ii) a transmitted wave of amplitude $\mathrm{V}\left(1+\Gamma_{1}\right) \xi\left(1+\Gamma_{2}\right)$ at B coming out of the sample and further travelling in air along z-direction. Now, the wave in (i) travels back in the material through a distance ' d ' and reaches the plane A with attenuated amplitude $\mathrm{V}\left(1+\Gamma_{1}\right) \xi \Gamma_{2} \xi$. At plane A, this gives rise to a transmitted wave of amplitude $\mathrm{V}\left(1+\Gamma_{1}\right) \xi \Gamma_{2} \xi\left(1+\Gamma_{2}\right)$ which comes out of the sample and travels towards opposite (-z) direction and a reflected wave of amplitude $\mathrm{V}\left(1+\Gamma_{1}\right) \xi \Gamma_{2} \xi \Gamma_{2}$ which travels towards B and encounters multiple reflections and transmissions at planes A and B. The total amplitude , V_{B}, transmitted at B would be given by

$$
\begin{align*}
& \mathrm{V}_{B}= \mathrm{V}\left(1+\Gamma_{1}\right) \xi\left(1+\Gamma_{2}\right)+\mathrm{V}\left(1+\Gamma_{1}\right)\left(\xi \Gamma_{2}\right)^{2} \xi\left(1+\Gamma_{2}\right)+\mathrm{V}\left(1+\Gamma_{1}\right)\left(\xi \Gamma_{2}\right)^{4} \xi(1+ \\
&\left.\Gamma_{2}\right)+\mathrm{V}\left(1+\Gamma_{1}\right)\left(\xi \Gamma_{2}\right)^{6} \xi\left(1+\Gamma_{2}\right)+\cdots \tag{A.2}\\
&=\mathrm{V}\left(1-\Gamma^{2}\right) \xi+\mathrm{V}\left(1-\Gamma^{2}\right) \xi(\xi \Gamma)^{2}+\mathrm{V}\left(1-\Gamma^{2}\right) \xi(\xi \Gamma)^{4}+\mathrm{V}\left(1-\Gamma^{2}\right) \xi(\xi \Gamma)^{6}+\cdots \\
&=\frac{\mathrm{V}\left(1-\Gamma^{2}\right) \xi}{1-\Gamma^{2} \xi^{2}} \tag{A.3}
\end{align*}
$$

Therefore, we get

$$
\begin{equation*}
S_{21}=\frac{V_{B}}{V}=\frac{\left(1-\Gamma^{2}\right) \xi}{1-\Gamma^{2} \xi^{2}} \tag{A.4}
\end{equation*}
$$

This is Equation (3) of Nicolson et al. (1970)
Simiarly, the total amplitude , V_{A}, reflected at A would be given by

$$
\begin{aligned}
V_{A}=V \Gamma_{1}+ & V\left(1+\Gamma_{1}\right) \xi \Gamma_{2} \xi\left(1+\Gamma_{2}\right)+V\left(1+\Gamma_{1}\right)\left(\xi \Gamma_{2}\right)^{3} \xi\left(1+\Gamma_{2}\right) \\
& +\mathrm{V}\left(1+\Gamma_{1}\right)\left(\xi \Gamma_{2}\right)^{5} \xi\left(1+\Gamma_{2}\right)+\mathrm{V}\left(1+\Gamma_{1}\right)\left(\xi \Gamma_{2}\right)^{7} \xi\left(1+\Gamma_{2}\right)+\cdots
\end{aligned}
$$

$$
\begin{equation*}
=V \Gamma_{1}+\frac{V\left(1+\Gamma_{1}\right) \xi\left(1+\Gamma_{2}\right) \xi \Gamma_{2}}{1-\left(\xi \Gamma_{2}\right)^{2}} \tag{A.5}
\end{equation*}
$$

$$
\begin{equation*}
=V \Gamma_{1}+\frac{V\left(1-\Gamma^{2}\right) \xi^{2}\left(-\Gamma_{1}\right)}{1-\left(\xi \Gamma_{1}\right)^{2}} \tag{A.7}
\end{equation*}
$$

$$
\begin{equation*}
=V \Gamma \frac{1-\xi^{2}}{1-(\Gamma \xi)^{2}} \tag{A.8}
\end{equation*}
$$

Thus we get

$$
\begin{equation*}
S_{11}=\frac{V_{A}}{V}=\frac{\left(1-\xi^{2}\right) \Gamma}{1-\Gamma^{2} \xi^{2}} \tag{A.9}
\end{equation*}
$$

By defining quantities V_{1} and V_{2} as $\mathrm{V}_{1}=\mathrm{S}_{21}+\mathrm{S}_{11}$ and $\mathrm{V}_{2}=\mathrm{S}_{21}-\mathrm{S}_{11}$, we get

$$
\begin{align*}
& V_{1}=S_{21}+S_{11}=\frac{\xi+\Gamma}{1+\Gamma \xi} \tag{A.10}\\
& V_{2}=S_{21}-S_{11}=\frac{\xi-\Gamma}{1-\Gamma \xi} \tag{A.11}\\
& V_{1} V_{2}=\frac{\xi^{2}-\Gamma^{2}}{1-\Gamma^{2} \xi^{2}} \tag{A.12}\\
& V_{1}-V_{2}=2 \Gamma \frac{1-\xi^{2}}{1-\Gamma^{2} \xi^{2}} \tag{A.13}
\end{align*}
$$

Similarly, we define a quantity X as

$$
\begin{equation*}
X=\frac{1-V_{1} V_{2}}{V_{1}-V_{2}} \tag{A.14}
\end{equation*}
$$

Which , by using Eq and Eq , can be written as

$$
\begin{equation*}
X=\frac{1+\Gamma^{2}}{2 \Gamma} \tag{A.15}
\end{equation*}
$$

Also, X can be expressed in terms of S_{11} and S_{21} as follows. We have

$$
\begin{align*}
V_{1} V_{2} & =S_{21}^{2}-S_{11}^{2} \tag{A.16}\\
V_{1}-V_{2} & =2 S_{11} \tag{A.17}
\end{align*}
$$

which yield

$$
\begin{equation*}
X=\frac{S_{11}^{2}-S_{21}^{2}+1}{2 S_{11}} \tag{A.18}
\end{equation*}
$$

Thus Equation (A.15) give s

$$
\begin{equation*}
\Gamma=X \pm \sqrt{ }\left(X^{2}-1\right) \tag{A.19}
\end{equation*}
$$

with the appropriate sign being chosen so that $|\Gamma|<1$
and

$$
\begin{equation*}
\xi=\frac{S_{21}+S_{11}-\Gamma}{1-\left(S_{21}+S_{11}\right) \Gamma} \tag{A.20}
\end{equation*}
$$

