APPENDIX A

Consider that a wave , which is initially travelling in air ( permittivity g |,
permeability py , characteristic impedance Zy, ) in a waveguide along z- direction,
strikes the sample AB having permittivity € , permeability @ and characteristic

impedance Z .
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Figure A.1 Sketch showing reflection and transmission of electromagnetic wave
propagating in Z direction and striking a dielectric medium of length 1 [ Keysight
(2016) ].

The wave sees a mismatched load and suffers partial reflection and transmission at
the air-sample interface. The reflection coefficient , assuming that the load is of
infinite extent, is give as [Tripathi (2015); Baker-Jarvis et al. (1993); Hayt et al.
(2012); Nicolson et al.(1979); Sadiku (2007)]
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where y and 1y, are the propagation constants for the fundamental TE
mode in the waveguide filled with the material and air respectively. p and pg are the

permeability of the sample and air respectively.
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If the amplitude of the wave incident at the air-sample interface A 1s V , the
amplitude of the reflected wave would be V Iy where [’y = I . The transmitted
amplitude at A would be V (1+I'}) which would get attenuated by a factor &=e¢™ as
the wave traverses the medium along z direction. If the thickness of the sample is ‘d’
(ie the sample extends from plane A to plane B where AB = d ), the amplitude at B
would be V (1+I')) § where ¢& is the transmission coefficient between faces A and B.
At B, which is a material - air interface, the wave sees an impedance mismatch and is,
therefore partly reflected with reflection coefficient I, where I';=-I" . Thus we have
(1) a reflected wave of amplitude V (1+I'}) & I', starting at B travelling towards A
and (ii) a transmitted wave of amplitude V (1+I'}) § (1+ I'; ) at B coming out of the
sample and further travelling in air along z-direction. Now, the wave in (i) travels
back in the material through a distance ‘d’ and reaches the plane A with attenuated
amplitude V (1+I'1) & ' & . At plane A, this gives rise to a transmitted wave of
amplitude V (1+I')) § ', & (1+I';) which comes out of the sample and travels towards
opposite ( -z) direction and a reflected wave of amplitude V (1+I')) E I, &I, which
travels towards B and encounters multiple reflections and transmissions at planes A

and B. The total amplitude , Vy , transmitted at B would be given by

Vp=VA+TEA+T) +VA+T)EN)?*EA+T,) + VA +TErN* (1 +
[)+ VA +TER)°E (A +T,) + - .. (A2)

=V(1-T?*)e+ V(1 -T?)g EN? + V(1 - T?)g (ED* + V(1 —T?)E (€N + -

v(1-T?)g
= T2 ..(A.3)
Therefore , we get
2
Sp1 = - ..(A.4)

v 1-T2¢?
This is Equation (3) of Nicolson et al. (1970)

Simiarly, the total amplitude , V, , reflected at A would be given by
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Vi =V + VA+TE e +T) + V(A +T)(ER)* & +T7)

+VA+T)ER) EA+T) +VA+T)EN)7 (L +T) + -

V(+I)EA+) E
1-(§12)?2

=Vr1+

_ v(1-r?)&2(-1y)
=Vh+ 1-(§1y)?

_ 1-¢?
=vr 1-(ré)?

Thus we get

_ Va_ (=8)r
= e

By defining quantities Vyand V; as V= S,,+S;; and V,=S,-S11, we get

E+T
Vi = 831+ 511 = Tere

f_
Vo = 8531 — 511 =1—_r§

52_[‘2

V1V2 = _1—1—'252
1-¢2
Vi=Vo =20 s

Similarly, we define a quantity X as

1-ny,
T -

X

Which , by using Eq and Eq , can be written as
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Also, X can be expressed in terms of S;; and S,; as follows. We have
ViV, = S2, —S4 ...(A.16)
V=V, =28; «(A.17)
which yield

S2,-52,+1

X = 25, .(A.18)
Thus Equation (A.15) gives
r=x +Jx*-1) .(A.19)
with the appropriate sign being chosen so that | r | <1
and
§ = Sutu-l (A20)

1-(S21+S11)7
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