List of Figures

1.1	Illustration of synthesis of bimetallic NPs of desired stoichiometry where	
	A and B represents metal I and metal II, respectively.	9
1.2	Depiction of shape controlled synthesis of bimetallic NPs of desired stoi-	
	chiometry where A represents metal I. The B, B^+ and B-R correspond to	
	elemental, ionic and organometallic precursors of metal II, respectively.	9
1.3	Schematic displaying coreduction strategy to synthesize bimetallic NPs.	
	Metals precursor A^+ and B^+ are in cationic form.	10
1.4	Equilibrium phase diagram of Ag-Cu system [70]	10
1.5	Illustration of Cu core-Ag shell NPs synthesis adopted from Grouchko et	
	al. [79]	11
1.6	Equilibrium phase diagram of Au-Cu system [80]	12
1.7	Plasmon oscillations for a sphere showing the displacement of conduction	
	electron charge cloud relative to the nuclei. The transverse and longitu-	
	dinal modes of oscillations from a nanorod and corresponding spectral	
	manifestation as observed in UV-Vis absorbance spectrum [108]	18
1.8	Hydrolysis of starch in acidic medium [140].	26
2.1	Scheme of synthesis protocol adopted for Ag, Au and Cu NPs	31
2.2	Schematic representation of synthesis method utilized for Ag-Cu and Au-	
	Cu alloy NPs.	31
2.3	Illustration of synthesis steps used to synthesize faceted Au NPs	32

3.4	Representative TEM images (a,c) and corresponding SAD patterns (b,d)	
	of Ag NPs synthesized with pH 9.0 and 11.0, respectively.	57
3.5	Particle size histograms (a,b) and high magnification BF TEM images	
	showing growth twins (arrows) in (c,d) of Ag NPs with pH 9.0 and 11.0,	
	respectively.	58
3.6	HRTEM image from a single particle from pH \sim 11.0 sample. The lattice	
	fringe spacing corresponding to d-spacing of $\{111\}$ and grain boundary	
	is depicted.	59
3.7	X-ray diffraction patterns of Ag NPs synthesized with pH 9.0 (red) and	
	11.0 (black)	60
3.8	Rice-starch stabilized Au NPs sols.	61
3.9	pH of the reaction mixtures before and after pouring Au ions	64
3.10	UV-Vis spectra of 1RS, 2RS, 4RS and 6RS sols after 17 h	65
3.11	Temporal evolution of UV-Vis spectra of 1 RS sol from 79 h to 12 months.	66
3.12	Temporal evolution of UV-Vis spectra of 4 RS sol from 79 h to 12 months.	67
3.13	Representative bright field TEM images of (a) 1RS, (b) 2RS, (c) 4RS and	
	(d) 6RS	69
3.14	Size distribution histograms of 1RS, 2RS, 4RS and 6RS	70
3.15	Representative SAD pattern from 1RS sample	71
3.16	HRTEM images of (a) 1RS, (b) 2RS, 4RS(c) and 6RS with a polyhedral	
	particle as inset (d).	72
3.17	Rice-starch stabilized Cu NPs sol.	73
3.18	(a) UV-Vis absorbance spectra of S1,S2 and S3 sols and (b) temporal evo-	
	lution of UV-Vis spectra of sol S3	74
3.19	XRD patterns of Cu NPs with varying pH (S1,S2 and S3)	76
3.20	(a) TEM image, (b) corresponding SAD pattern, (c) HRTEM image from	
	a particle and (d) size distribution histogram of Cu NPs synthesized keep-	
	ing pH \sim 11.0.	77

4.1	XRD patterns of rice-starch stabilized Ag-Cu alloy NPs	83
4.2	Representative TEM images of A1,A3 and A5 (a-c), corresponding SAD	
	patterns (d-f) and size distribution histograms (g-i).	84
4.3	Representative TEM images (a), SAD pattern (b), magnified image (c),	
	and HRTEM image of a particle showing domains with varied degree of	
	solid solubilities (d) of Ag-Cu alloy NPs.	85
4.4	Representative HRTEM images from Ag-Cu alloy NPs of samples A1(a),	
	A3(b), and A5 (c) respectively. The lattice fringe spacing corresponding	
	to Ag-rich phases are depicted.	86
4.5	HAADF-STEM-EDS elemental line scan from a single particle from alloy	
	A1. The HAADF image (a) and Ag, Cu line profiles (b) of a single particle.	86
4.6	HAADF-STEM-EDS elemental maps of Ag and Cu from alloy A3 from	
	two different regions.	87
4.7	HAADF-STEM-EDS elemental line scans from two particles from alloy	
	A5. The HAADF image (a) and Ag, Cu line profiles (b) of from particles.	88
4.8	UV-Vis absorbance spectra of Ag-Cu alloy sols displaying LSPR peaks	
	corresponding to Ag-rich and Cu-rich NPs (a) and deconvoluted spectrum	
	of alloy A1 showing absorbance corresponding to Ag NPs, (Ag) NPs, Cu	
	NPs and copper oxide NPs respectively(b)	91
4.9	UV-Vis absorbance spectra corresponding to Cu, Au-Cu (1:3), Au-Cu	
	(1:1) and Au-Cu (3:1) nanoparticles	97
4.10	Representative BF TEM images (a-c), corresponding selected area elec-	
	tron DPs (d-f) and size distribution histograms (g-i) of Au-Cu (3:1), Au-	
	Cu (1:1) and Au-Cu (1:3) samples	98
4.11	HRTEM image from a section of nanowire (left) where twin boundary	
	(TB) and stacking fault is depicted. The STEM-HAADF-EDS elemental	
	maps of nanowire networks and a single particle from Au-Cu (3:1) (a-d)	
	and Au-Cu (1:3) (b-h) samples.	100

- 4.12 Representative BF TEM micrograph (a) and NBD patterns acquired from three different regions (b-d) of Au-Cu (3:1) sample. Blue filled circles showing superlattice spots and unindexed spots respectively in Figures (b) and (c), indexed based on orthorhombic AuCu (oP8) along [132] and [104] zones. Figure (d) shows NBD and spots could be indexed as those of orthorhombic AuCu (oP8) phase along [214] zone axis. 102
- 4.13 Representative BF TEM micrograph (a) and NBD patterns acquired from three different regions (b-d) from Au-Cu (1:1) sample. Blue open and filled circles in Figures (b) and (c) showing superlattice spots along [210] and [201] directions of orthorhombic AuCu oriented along [120] and [132] zone axes respectively. Figure (d) shows NBD and spots could be indexed as those of orthorhombic AuCu (oP8) phase along [214] zone axis. 104
- 4.14 Representative BF TEM micrograph (a) and NBD patterns acquired from three different regions (b-d) from Au-Cu (1:3) sample. Figure 4.14 (b) and (d) could be indexed as orthorhombic AuCu with some of the extinct spots (shown as yellow open circles) in latter with zone axes [214] and [010] respectively. Figure 4.14(c) shows NBD and spots could be indexed as those of ordered cubic AuCu₃ along zone axis [112]. 105

- 4.17 (a) Unit cell of standard orthorhombic AuCu (oP8) with shifted coordinates (for better illustration), (b) unit cell of transformed orthorhombic structure generated with space group P2₁2₁2 (S.G. no. 18) and (c) unit cell corresponding to transformed phase from orthorhombic Pbam to P2₁2₁2 with lattice parameters a = 4.46 Å, b = 2.83 Å, c = 4.56 Å.

4.18	Experimental NBD (a) and corresponding computed patterns (b) from	
	Au-Cu (1:3) sample. Figure (a) displays NBD indexed with space group	
	$P2_12_12$ (S.G. no. 18) with lattice parameters a = 4.46 Å, b = 2.83 Å and c	
	= 4.56 Å along [001] zone axis. The computed pattern corresponding to	
	this cell (b) reproduces all the observed spots of (a)	11
5.1	Temporal evolution of morphology (a) seed, (b) 10 min, (c) 20 min and	
	(d) 30 min grown samples. Inset in (a) shows seed morphology at higher	
	magnification. Population statistics of shapes is given in table	21
5.2	Morphology evolution of Au NPs with respect to time upto 2 h 1	22
5.3	Bright field TEM image (a), SAD pattern along $< 110 >$ (b), dark field	
	image (c) and HRTEM image of tip of the pentagon Au nanoparticles (d).	24
5.4	Systematic α -tilt study of Au nanoparticles	26
5.5	Bright field TEM micrograph of pseudospherical Au nanoparticles 1	27
5.6	Bright field TEM image (a), SAD pattern along $< 111 >$ (b), dark field	
	image (c) and HRTEM image of tilted trigonal Au nanoparticles (d) 1	30
5.7	Bright field TEM image of truncated tetrahedral Au NPs showing a thin	
	dark region of 3.0 nm indicating fault (a), HRTEM micrograph depicting	
	edge of the particle after tilting 2-3 degree (b), BF micrograph with sur-	
	face steps (shown by arrows) (c) and SAD pattern of another truncated	
	tetrahedral Au NPs showing forbidden spots (d)	31
5.8	Observed color variation of sols including the seed. The UV-Vis spectra	
	of samples grown from 10 min to 5 h are also shown	32
6.1	Representative TEM images of Au-Cu nanostructures with varying HDA	
	concentration. Figures (a), (b), (c), and (d) corresponds to HDA concen-	
	tration of 45 mg, 90 mg, 135 mg and 180 mg, respectively	39
6.2	Selected area diffraction patterns from Au-Cu (a) nanopods and (b)	
	nanowires	40
6.3	Representative HRTEM images of Au-Cu tripod (a) and tetrapod (b) 1	41

6.4	STEM-EDS elemental maps of tripod (a- c) and tetrapod (d- f) Au-Cu	
	nanostructutes. Figure (g) shows EDS spectrum of Au-Cu nanostructures.	142
6.5	Reperentative TEM image with HRTEM from a particle as inset (a) and	
	corresponding diffraction pattern (b) respectively, of Au NPs	143
6.6	Growth morphologies of Au-Cu nanostructures by changing the molar	
	precursors ratio of Au and Cu as (a) 1: 0, (b) 2:1, (c) 3:1 and (d) 1:2,	
	respectively.	144
6.7	STEM-EDS spectrum of Au-Cu nanowires grown with Au:Cu (1:1) and	
	HDA concentration of 90 mg	145
6.8	Growth morphology evolution of Au-Cu nanostructures after (a) 2 min,	
	(b) 4 min, (c) 6 min and (d) 10 min respectively at fixed HDA proprtion	
	of 90 mg with molar ratio of Au and Cu precursors as 1:1	146
6.9	HRTEM images of Au-Cu nanostructures grown after 2 min. Figures	
	(a) and (c) showing lattice matched attachment along $\{111\}$ and $\{200\}$	
	planes respectively. Figure (b) shows twinning attachment along $\{111\}$	
	planes of two crystals. Figure (d) displays facet planes $\{111\}$ and $\{100\}$	
	where another crystal can attach through MA or TA.	147
6.10	UV-Vis-NIR spectra of nearly spherical Au NPs and Au-Cu multipods	
	nanostructures.	148
6.11	UV-Vis spectra of Au-Cu nanostructures by varying HDA concentration	
	(a) and Au:Cu precursor ratio(b) respectively	149
7.1	Bright field TEM image (a), corresponding selected area diffraction pat-	
///	tern (b) and STEM-EDS line scan across two particle (c) of the Au-Cu	
	alloy nanoparticles sample reacted at 180 °C for 1 h	154
7.2	TEM image showing AuCu nanoparticles heat treated at 290 °C for 2 h	
	and TEM-EDS spectrum corresponding to selected area encircled in the	
	image	155
	-	

7.3	BF TEM image (a), corresponding SAD pattern (b), and STEM-EDS line	
	scan of a single nanoparticle for Au-Cu nanoparticles processed at 290°C	
	for 2 h. The schematic rings (white color) are inserted in SAD pattern to	
	show the disposition of reflections.	157
7.4	STEM-HAADF-EDS elemental mapping of AuCu nanoparticles pro-	
	cessed at 290 °C for 2 h.	158
7.5	Experimental nano beam diffraction from a single particle (a), computer	
	generated electron diffraction pattern (b), stacked stereographic plots	
	along [110]and [111] directions (c) maintaining orientation relationship	
	in conformity with (a), and high resolution TEM micrograph with FFT	
	(bottom right) and background corrected image (top left) as insets (d). $\ . \ .$	159
7.6	HRTEM micrograph showing transformed cubic AuCu crys-	
	tals having orientation relationship AuCu $[1\overline{1}0]$ //AuCu $[1\overline{1}1]$	
];AuCu(110)//AuCu(110) (a).The inset in Figure (a) shows FFT	
	corresponding to selected region and is similar to NBD pattern. The	
	magnified image depicts two domains of the crystals having $\{110\}$ planes	
	making an angle of $\sim 35^{\circ}$ (b)	161
7.7	Experimental nano beam diffraction pattern (a), computer generated elec-	
	tron diffraction pattern (not to the scale) (b), stereographic projection plot	
	projected along $[1\overline{2}1]$ and $[1\overline{1}1]$ zones (encircled poles from two zones)	
	(c), and HRTEM micrograph with FFT (arrow displaying division of 111	
	reflection into 5 parts) and background corrected image (arrow showing	
	real space distance ~ 11 Å along [111] direction) as insets (d). \ldots .	162

7.8	HRTEM micrograph depict coexisting cubic AuCu3 [I] and AuCu3	
	[II] phases having orientation relationship $AuCu_3$ [I] $[1\bar{2}1]$]//AuCu ₃ [II]	
	[010];AuCu ₃ [I](111)//AuCu ₃ [II]($\overline{1}01$). The inset in Figure (a) shows	
	FFT corresponding to selected region and is similar to NBD pattern. The	
	two cubic phases are displayed in the magnified HRTEM image (b). The	
	spacing ~ 11 Å along [111] direction is also shown. The interfered region	
	of the two phases is encircled.	163
8.1	Calculated single atom potentials of Ag, Au, and Cu	169
8.2	Schematic of image simulation adopted for quantification of HRTEM im-	
	ages	171
8.3	HRTEM image of Ag NPs acquired along [001] zone axis with FFT as	
	inset (a) and high magnification image selected from (a) for quantification	
	(b)	172
8.4	Simulated images with varying defocus and thickness as well as superim-	
	posed Ag atom columns.	173
8.5	HRTEM image of Au NPs acquired along [011] with FFT as inset (a) and	
	area selected for quantification (b).	174
8.6	Simulated images with varying defocus and thickness as well as superim-	
	posed Au atom columns.	175
8.7	HRTEM image of Ag-Cu alloy NPs acquired along [011] with FFT as	
	inset (a) and simulated images from pure Ag with varying thickness and	
	defocus (b)	176
8.8	Experimental image (a) and projected Ag structure along [110] with trace	
	of planes (111) and (200) (b). Lattice planes along with the measured d-	
	spacings are overlaid on the experimental image. Traces of same lattice	
	planes are shown on the projection in (b).	176
8.9	HRTEM image of Au-Cu alloy NPs acquired along [011] with FFT as	
	inset (a) and simulated images from pure Au with varying thickness and	
	defocus (b)	177

8.10	Experimental image (a) and projected Au structure along [011] with trace	
	of planes 111 and (200) (b).Lattice planes along with the measured d-	
	spacings are overlaid on the experimental image. Traces of same lattice	
	planes are shown on the projection in (b).	178
8.11	Experimental HRTEM image of Cu ₃ Au intermetallic NPs along zone axis	
	[001] (a) and thickness-defocus map of simulated images (b). Insets in (a)	
	shows FFT pattern and area selected for image quantification. Projected	
	unit cell along [001] is also displayed. Atom columns are superimposed	
	in the simulated image.	179
8.12	Experimental HRTEM image along ordered cubic Cu ₃ Au along [001]	
	zone axis (a) and corresponding projected structure with trace of planes	
	(100), (010), and (110) (b)	180
8.13	Plot of exit plane wave function, projected potential, wave-phase and	
	wave-amplitude with thickness of ordered cubic Cu ₃ Au along [001] zone	
	axis	184
8.14	Variation with thickness of the exit-plane wave amplitude and phase along	
	the Au (a,b) and the Cu (c,d) atom columns in cubic Cu ₃ Au phase	185
Λ 1	PETEM micrographs of $A \neq ND_{2}$ with $p \parallel 0$ (a, b) and $p \parallel 11$ (d, f)	101
A.1	DF TEM interographs of Ag INFS with pH 9 (a-c) and pH 11 (u-1)	191
A.2	BF TEM images of Cu NPS synthesized keeping pH TT (a-c) and TKS Au	102
		192
A.3	BF TEM images with changing molar precursors ratio of Au and Cu as	100
	Au-Cu $(3:1)$ (a-c) and Au-Cu $(1:1)$ (d-t).	192