Contents

List of Figures	xiii
List of Tables	xxiii
Abbreviations	XXV
Preface	xxvii

1	1 INTRODUCTION AND LITERATURE REVIEW						
	1.1	Noble Metal Nanoparticles	1				
	1.2	Oriented Attachment	4				
	1.3	Ag, Au, and Cu nanoparticles	5				
	1.4	Alloy Nanoparticles	6				
	1.5	Ag-Cu Alloy Nanoparticles	9				
	1.6	Au-Cu Alloy Nanoparticles	12				
	1.7	Order-disorder transformation	15				
	1.8	Role of vacancy in formation of new phases	16				
	1.9	Optical properties of noble metal NPs	17				
		1.9.1 Surface Plasmon Resonance	17				
		1.9.2 Tuning the surface plasmon resonance band of metallic nanos-					
		tructures	18				

		1.9.3	Localized	d surface plasmon resonance (LSPR)	19
		1.9.4	Effect of	shape and size on LSPR	20
		1.9.5	LSPR be	havior of Ag-Cu and Au-Cu Alloy Nanoparticles	21
	1.10	Charac	terization	of NPs	22
		1.10.1	TEM Inv	estigations of NPs	23
		1.10.2	Multislic	e image simulation	23
	1.11	Hydrol	ysis of sta	rch	25
	1.12	Object	ives of the	thesis	27
2	FVD	FDIMI	TAT M	ETHODS AND TECHNIQUES	20
4	LAI 2.1	Materi	als and Me	ethods	29 29
	2.1	2 1 1			29 20
		2.1.1	Synthesis	a Methods	2) 29
		2.1.2	2 1 2 1	Synthesis of Ag. Au. and Cu Nanoparticles	2) 30
			2.1.2.1	Synthesis of A. Cu and Au Cu Alloy Nanoparticles	31
			2.1.2.2	Synthesis of facetted Au nanoparticles	31
			2.1.2.3	Synthesis of Au-Cu papostructures	32
			2.1.2.4	Synthesis of Au-Cu intermetallic nanoparticles	32
	2.2	Transn	vission Fle	octron Microscope (TEM)	34
2.2 Transmission Electron Microscope (TEM)		s of TEM	34		
		2.2.1	TEM wo	rking/operating process	35
		2.2.2	Flectron	diffraction pattern and image formation in TEM	36
		2.2.5	Bright fil	ed and dark field images	30
		2.2.4	High res	olution TEM (HRTEM)	30
		2.2.5	High and	ale annular dark field - scanning transmission electron	39
		2.2.0	microsco	nv (HAADE-STEM)	41
		227	X-ray en	ergy dispersive X-ray spectroscopy (FDS)	42
		2.2.8	Nano-be	am diffraction (NBD)	43
	23	X-ray l	Diffraction	(\mathbf{XRD})	45
	2.5		- muchol	(гJ

	2.4	Study	of stability	y of the sols	46
3	GRI	EEN SY	NTHESI	S AND CHARACTERIZATION OF Ag, Au AND Cu	
	NAN	NOPAR	TICLES		49
	3.1	Introd	uction		49
	3.2	Synthe	esis and C	haracterization of Ag Nanoparticles	52
		3.2.1	Experim	ental details	52
		3.2.2	Results a	and discussion	53
			3.2.2.1	LSPR behaviour of Ag NPs sols	53
			3.2.2.2	Stability Mechanism	56
			3.2.2.3	TEM Analysis of Ag NPs sols	57
	3.3	Synthe	esis and C	haracterization of Au Nanoparticles	61
		3.3.1	Experim	ental details	61
			3.3.1.1	Preparation of rice-starch extract	61
			3.3.1.2	Synthesis of Au NPs	62
			3.3.1.3	Characterization of Au NPs	62
		3.3.2	Results a	and discussion	63
			3.3.2.1	Au ions reduction with rice-starch	63
			3.3.2.2	Au NPs stabilization with rice-starch	64
			3.3.2.3	LSPR behavior of Au NPs sols	65
			3.3.2.4	TEM and HRTEM study of Au NPs	68
	3.4	Synthe	haracterization of Cu Nanoparticles	73	
		3.4.1	Experim	ental details	73
		3.4.2	Results a	and discussion	74
			3.4.2.1	LSPR behavior of Cu NPs	74
			3.4.2.2	X-ray diffraction study	75
			3.4.2.3	TEM investigation of Cu NPs	75
	3.5	Conclu	usions		78

4	SYNTHESIS AND CHARACTERIZATION OF Ag-Cu AND Au-Cu ALLOY				
	NAN	NOPAR	TICLES		79
	4.1	The A	g-Cu alloy	nanoparticles	79
		4.1.1	Introduc	tion	79
		4.1.2	Experim	ental	80
		4.1.3	Results a	and discussion	81
		4.1.4	LSPR be	havior of Ag-Cu alloy NPs	89
		4.1.5	Stability	of Ag-Cu alloy NPs	93
	4.2	The A	u-Cu alloy	nanoparticles	94
		4.2.1	Introduc	tion	94
		4.2.2	Experim	ental	95
			4.2.2.1	Synthesis of Cu nanoparticles	95
			4.2.2.2	Synthesis of Au-Cu alloy nanoparticles	95
			4.2.2.3	Characterization of Au-Cu alloy nanoparticles	95
		4.2.3	Results a	and discussion	96
			4.2.3.1	LSPR behavior of Au-Cu alloy NPs	96
			4.2.3.2	Structural and microstructural studies of as-synthesized	
				Au-Cu alloy NPs	98
			4.2.3.3	Chemical Analyses using STEM-HAADF-EDS	101
			4.2.3.4	Structural investigation of heat treated Au-Cu alloy	
				nanoparticles	102
		4.2.4	Conclusi	ons	114
5	SHA	PE CO	NTROLI	ED SVNTHESIS OF AU NANOPARTICLES	117
5.1 Introduction					117
			taile	120	
	5.2	5 2 1	Prenarati	ion of Au seed	120
		5.2.1	Synthesi	s of faceted Au nanonarticles	120
	53	Recult	s and discu		120
	5.5	result	s and uise		141

		5.3.1 Morphological and structural study	22
		5.3.2 LSPR behavior of faceted Au nanoparticles	32
	5.4	Conclusions	33
6	MO	RPHOLOGICAL TRANSFORMATION IN Au-Cu ALLOY	
	NAN	NOPARTICLES 13	35
	6.1	Introduction	35
	6.2	Experimental details	37
	6.3	Results and discussion	38
		6.3.1 Growth of Au-Cu multipod nanostructures	38
		6.3.2 Formation of Au-Cu nanowires	43
		6.3.3 LSPR behavior of Au-Cu nanostructures	49
	6.4	Conclusions	50
7	STR	UCTURAL TRANSFORMATION IN Au-Cu NANOPARTICLES 1	51
	7.1	Introduction	51
	7.2	Experimental details	52
	7.3	Results and discussion	54
	7.4	Conclusions	66
8	QUA	ANTIFICATION OF HIGH RESOLUTION PHASE CONTRAST IM-	
	AGI	ES THROUGH MULTISLICE IMAGE SIMULATIONS 10	67
	8.1	Introduction	67
	8.2	Image simulation	69
	8.3	Results and discussion	71
		8.3.1 HRTEM image quantification of Ag NPs 1	71
		8.3.2 HRTEM image quantification of AuNPs	73
		8.3.3 HRTEM image quantification of Ag-Cu alloy NPs 1	74
		8.3.4 HRTEM image quantification of Au-Cu alloy NPs 1'	77
		8.3.5 Direct structure imaging in Au-Cu intermetallic NPs 1	79

		8.3.6 Electron channeling behavior along Au and Cu atom columns 1	81					
	8.4	Conclusions	82					
9	9 SUMMARY AND SCOPE FOR FUTURE WORK							
	9.1	Summary	87					

A	Particle Size Analysis						
	A.1	Size distribution histogram	. 191				
Bibliography							
Lis	st of I	Publications	225				