List of figures

Figure No.	Description	Page
		No.
Figure 1.1	Pathophysiological pathways of Alzheimer's disease	10
Figure 1.2	FDA approved AChE inhibitors for the treatment of Alzheimer's disease	14
Figure 1.3	NMDA receptor antagonist for the treatment of Alzheimer's disease	15
Figure 2.1	Hit(s) identification workflow by structure-based and ligand- based drug design	25
Figure 2.2	Cocrystal inhibitor structures from MMP-9 structure for the development of e-pharmacophore with their respective PDB, resolutions, and inhibitory activity (IC ₅₀ value /Ki value)	28
Figure 2.3	Alignment of all 155 ligands on the pharmacophore model AADHR of 3D-QSAR	32
Figure 2.4	MMP-9 binding site pockets (maroon) with cocrystal ligands (green) from five PDB codes, utilizing "create binding site surfaces"	47
Figure 2.5	e-Pharmacophore hypotheses with their respective PDB codes. A, hydrogen-bond acceptor, pink sphere with arrow; R, aromatic ring, yellow open circle; D, hydrogen-bond donor, blue sphere with the arrow; N, negative ionizable group, pink sphere	48
Figure 2.6	3D-QSAR based-pharmacophore hypotheses. A, hydrogen-bond acceptor, pink sphere with arrow; D, hydrogen-bond donor, blue sphere with arrow; R, aromatic ring, yellow open circle; H, hydrophobic group, green sphere	54
Figure 2.7	Plot of the observed pIC_{50} versus predicted pIC_{50} of MMP-9 inhibitors from the model AADHR obtained by using 124 training set ligands and validated by using 31 test set ligands. Red dot line represents regression line for the training set, blue dot line for test set and green dot line for training set of compounds when intercept set as zero. The equation is the best fit line of training set	54
Figure 2.8	Contour maps of most active (left) and least active (right) known MMP-9 inhibitors. Hydrogen-bond donor effect, most active, A & least active, B (blue for favorable; red for unfavorable); non-polar effect, most active, C & least active, D (orange-yellow, favorable; purple, unfavorable); electron-withdrawing effect, most active, E; and least active, F (yellow, favorable; maroon, unfavorable)	55
Figure 2.9	The HOMO map of most active inhibitor, A; least active inhibitor, B; and hit (H-7), C; the LUMO of most active, D; least active, E; and H-7, F; and molecular electrostatic potential	63

	(MESP) picture of most active, G; least active, H; and H-7, I	
Figure 2.10	Structure of N73 and final hits with selective MMP-9 binding affinity	64
Figure 2.11	Selected hits for <i>in vitro</i> studies	65
Figure 2.12	Dose-response curves of hits with reference NNGH against MMP-9	66
Figure 2.13	Linear correlations between experimental and reported permeability of commercial drugs for PAMPA-BBB assay	67
Figure 2.14	RMSD plot of RMSD values (N73-4XCT and ZINC21212924- 4XCT complexes) for protein on the left Y-axis and for ligand on the right Y-axis; protein backbone in green, and ligand in maroon	70
Figure 2.15	RMSF of the protein C- α chain in N73-4XCT and ZINC21212924-4XCT complexes	71
Figure 2.16	Schematic diagrams of detailed ligand (N73 and ZINC21212924) interactions with amino acid residues of MMP-9 after MD simulation	71
Figure 3.1	Flowchart of hit(s) identification based on ligand-based and structure-based pharmacophore models	85
Figure 3.2	Alignment of all 142 AChE inhibitors with developed pharmacophore hypothesis	87
Figure 3.3	Structures of cocrystal ligand with PDB id and resolution	87
Figure 3.4	3D-QSAR pharmacophore hypotheses and structure-based pharmacophores models with their respective crystal structures. A, H-bond acceptor, Pink sphere containing arrow; D, H-bond donor, sky blue sphere with arrow; H, hydrophobic group, green sphere; P, positive ionizable group, violet sphere; R, aromatic ring, yellow circle	97
Figure 3.5	Plot of predicted pIC_{50} versus observed pIC_{50} of AChE inhibitors developed by model HPRRR with regression lines (original regression lines represented in green break line and regression lines with intercept zero in purple break line)	98
Figure 3.6	Crystal structures of AChE with cocrystal ligands (purple) and bonding interactions	98
Figure 3.7	Structures of final selected hits with Zinc database ids	103
Figure 3.8	Docking poses of ZINC72451013, ZINC20649934, ZINC05354646, ZINC79331983, ZINC20592007, ZINC77161317, ZINC58160603, and ZINC39154782 with AChE crystal structure; hits represented in yellowish green, residues in gray, H-bond in red, pi-cationic interaction in green and pi-pi stacking in cyan	104
Figure 3.9	Docking pose of four hits with 4M0E crystal structure using AutoDock (purple arrow indicates H-bond; green line denotes π - π	106

	stacking; red line for pi-cationic interactions	
Figure 3.10	Docking pose of another four hits with 4M0E crystal structure using AutoDock (purple arrow indicates H-bond; green line denotes π - π stacking; red line for pi-cationic interactions	107
Figure 3.11	Dose-response curves of selected hits with donepezil	111
Figure 3.12	Lineweaver-Burk plots from substrate-velocity curves of AChE	112
_	activity with different substrate concentrations (0.15–1.15 μ M) in	
	absence and presence of 0.25, 0.5 and $1\mu M$ of ZINC20592007	
Figure 3.13	Lineweaver-Burk plots from substrate-velocity curves of AChE	112
	activity with different substrate concentrations $(0.15-1.15\mu M)$ in	
Eigung 2.14	absence and presence of 0.25, 0.5 and 1 μ M of ZINC05354646	112
Figure 5.14	Lineweaver-Burk plots from substrate-velocity curves of AChe	115
	absence and presence of 0.5, 1 and 2 μ M of ZINC20649934	
Figure 3.15	Lineweaver-Burk plots from substrate-velocity curves of AChE	113
	activity with different substrate concentrations (0.15–1.15 μ M) in	
	absence and presence of 0.5, 1 and 2 μ M of ZINC39154782	
Figure 3.16	RMSD plot of RMSD values (donepezil-AChE, ZINC20592007-	117
	AChE, and ZINC20649934-AChE complexes) for protein on the	
	reen and ligand in marcon	
Figure 3.17	RMSF of the protein $C-\alpha$ chain in donepezil-AChE.	118
0	ZINC20592007-AChE, and ZINC20649934-AChE complexes	
Figure 3.18	Ligand interactions with amino acid residues of AChE after MD	118
Figure 4.1	Crystal structures of tau-tubulin kinase 1: A Structure of TTBK1	127
	with the clarification of different regions present in enzyme	
	protein utilizing PDB id: 4NFN; B Superimposed structures of TTPK1 2KC semiclar (DDD id: 4NFN) and encountries TTPK1	
	(PDB id: 4NFM)	
Figure 4.2	Schematic representation of hits identification process as tau-	127
0	tubulin kinase 1 inhibitor	
Figure 4.3	Structures of cocrystal ligands with their PDB ids and resolutions	128
Figure 4.4	Residues of crystal structures of tau-tubulin kinase 1 involved	134
	with binding interactions of cocrystal ligands (yellowish green).	
Figure 4.5	e-Pharmacophore models with respective crystal structures. 'A'	135
	denotes hydrogen bond acceptor, pink sphere with arrow; 'D'	
	indicates hydrogen bond donor, sky blue sphere containing arrow;	
Figure 4.6	K denotes aromatic ring, yellow circle Structures (with Zing database ids) of final identified bits as too	120
rigule 4.0	tubulin kinase 1 inhibitors	130
Figure 4 7	Representations for corrystal ligand 2KC: A Glide XP docking	139
- 19010 111	pose (ligand in yellow); B, Induced fit docking pose (ligand in	107

	cyan); C, Glide XP docking 2d pose; D, TTBK1 protein's residue	
	interactions with 2KC after MD simulations, E, RMSD plot of	
	RMSD values for protein on the left y-axis and ligand on right y-	
	axis were displayed, protein backbone in bottle green color, and	
	ligand in marcon: F RMSF of the protein C_{α} chain in 2KC-	
	TTBK1 complex	
Figure 4.8	Representation for correctal ligand ZINC1/6//830: A Glide XP	140
riguie 4.0	docking pose (ligand in vellow): B. Induced Fit docking pose	140
	(licend in even), C. Clide VB decking 2d nesses D. TTPK1	
	(ligand in cyan); C, Gilde AP docking 2d pose; D, IIBKI	
	protein's residue interactions with ZINC14044639 after MD	
	simulations; E, RIVISD plot of RIVISD values for protein on the	
	left y-axis and ligand on right y-axis were displayed, protein	
	backbone in bottle green, and ligand in maroon. F, RMSF of the	
	protein C-α chain in ZINC14644839-TTBK1 complex	
Figure 4.9	Representation for co-crystal ligand ZINC00012956: A, Glide XP	141
	docking pose (ligand in yellow); B, Induced Fit docking pose	
	(ligand in cyan); C, Glide XP docking 2d pose; D, TTBK1	
	protein's residue interactions with ZINC00012956 after MD	
	simulations; E, RMSD plot of RMSD values for protein on the	
	left y-axis and ligand on right y-axis were displayed, protein	
	backbone in bottle green, and ligand in maroon. F, RMSF of the	
	protein C-α chain in ZINC00012956-TTBK1 complex	
Figure 4.10	Representation for cocrystal ligand ZINC91332506: A, Glide XP	142
	docking pose (ligand in yellow); B, Induced Fit docking pose	
	(ligand in cyan); C, Glide XP docking 2d pose; D, TTBK1	
	protein's residue interactions with ZINC91332506 after MD	
	simulations; E, RMSD plot of RMSD values for protein on the	
	left y-axis and ligand on right y-axis were displayed, protein	
	backbone in bottle green, and ligand in maroon. F, RMSF of the	
	protein C-α chain in ZINC91332506-TTBK1 complex.	
Figure 4.11	Representation for cocrystal ligand ZINC69775110: A. Glide XP	143
0	docking pose (ligand in vellow): B. Induced Fit docking pose	_
	(ligand in cyan): C. Glide XP docking 2d pose: D. TTBK1	
	protein's residue interactions with ZINC69775110 after MD	
	simulations: F RMSD plot of RMSD values for protein on the	
	left y-axis and ligand on right y-axis were displayed protein	
	backbone in bottle green and ligand in maroon: E RMSE of the	
	protein C _{-a} chain in ZINC60775110_TTRK1 complex	
Figure 5 1	Irreversible (I) reversible (P) and selective MAO A or MAO P	153
riguie J.1	(A or B) inhibitors	155
Eiguro 5 2	$(A \cup D)$ minutors. Dissection of A and $N = A$ distant interval interval in the section A	160
Figure 5.2	Figure incontains of $4 - 0x - 1x$, $4 - 0x - 1x - 1$	100
	syntnesis from (E)-4-nydroxy-4-phenylbut-2-enoic acid	170
Figure 5.3	Docking pose of tragments with interacting amino acid residues	179

	of AChE	
Figure 5.4	Docking pose of fragments with interacting amino acid residues of MAO-B	180
Figure 5.5	Rationale for designed molecule as MAO and AChE inhibitor	181
Figure 5.6	HPLC Chromatogram (t_R , 3.007 min) of compound 6h at 250 nm	188
Figure 5.7	HPLC Chromatogram (t_R , 2.847 min) of compound 7h at 250 nm	188
Figure 5.8	Linear correlation chart of experimental and literature reported permeability of commercial drugs for PAMPA-BBB assay.	192
Figure 5.9	MD simulations of compound 6m with AChE: A, Docking pose after MD; B, RMSF curve for C-alphas; C, protein and ligand RMSD curve	198
Figure 5.10	MD simulations of compound 6n with MAO-B: A, Docking pose after MD; B, RMSF curve for C-alphas; C, protein and ligand RMSD curve	198
Figure 5.11	MD simulations of compound 7k with MAO-B: A, Docking pose after MD; B, RMSF curve for C-alphas; C, protein and ligand RMSD curve	199
Figure 5.12	MD simulations of compound 7p with MMP-9: A, Docking pose after MD; B, RMSF curve for C-alphas; C, protein and ligand RMSD curve	199
Figure A.1	Known MMP-9 inhibitors for development of 3D-QSAR models	207
Figure A.2	Total 24 hits from Zinc15 database as MMP-9 inhibitor (selective and non-selective)	219
Figure A.3	Binding pose of H-1 to H-12 in the active site pocket of MMP-9	220
Figure A.4	Binding pose of H-13 to H-24 at the active site pocket of MMP-9	221
Figure A.5	List of AChE Inhibitors used for development of 3D-QSAR model	222
Figure A.6	¹ H NMR spectrum of compound 6 C in DMSO-d ₆	237
Figure A.7	¹³ C NMR spectrum of compound 6 C in DMSO- d_6	237
Figure A.8	¹ H NMR spectrum of compound 7k in DMSO-d ₆	238
Figure A.9	13 C NMR spectrum of compound 7k in DMSO-d ₆	238
Figure A.10	FTIR spectra of compound 6h	239
Figure A.11	FTIR spectra of compound 7k	239
Figure A.12	Mass spectra of Compound 7k	240