List of Tables

Table No.	Description	Page
		no.
Table 1.1	Pathological factors involving neuropeptides in Alzheimer 's disease	9
Table 2.1	Crystal structures of human matrix metaloproteinase-9 with cocrystal ligands	27
Table 2.2	e-Pharmacophore hypotheses with feature scores	48
Table 2.3	Distance between the pharmacophore features of e- pharmacophores	49
Table 2.4	Evaluation of e-pharmacophores utilizing enrichment calculation	50
Table 2.5	Ligand-based hypotheses (3D-QSAR) with various scores	51
Table 2.6	Distance between the pharmacophore features of ligand-based hypotheses	51
Table 2.7	Internal validation parameters of 3D-QSAR models	52
Table 2.8	External Statistical Validation of 3D-QSAR hypotheses	53
Table 2.9	Number of hits retrieved at each stage of pharmacophore-based (structure and ligand-based) virtual screening	56
Table 2.10	Hits with their Zinc id, number of H-bonds, interacting amino acid residues, XP docking score, and Glide energy	57
Table 2.11	Hits with their XP docking score, IFD scores, AutoDock binding energy, and AutoDock calculated enzyme inhibition constant results	59
Table 2.12	Physiochemical descriptors of hits calculated by Qikprop model	60
Table 2.13	Calculated DFT properties of most active, least active and hits	62
Table 2.14	Glide docking scores of hits with MMP-2, MMP-3 and MMP-9 with cocrystal ligand of respective crystal structures	65
Table 2.15	Inhibitory activity of hits on human MMP-9, AChE, BuChE and propidium displacement asssay	66
Table 2.16	Permeability of hits determined by BBB-PAMPA study	67
Table 2.17	Permeability of nine commercial drugs for validation of PAMPA- BBB assay	68
Table 2.18	Cell viability and neuroprotection of hits on human neuroblastoma SH-SY5Y cell Line	68
Table 3.1	The 3D-QSAR pharmacophore hypothesis with various scores	95
Table 3.2	PLS statistics for internal validation of hypothesis HPRRR	96
Table 3.3	Distance between features of 3D-QSAR hypotheses and e- pharmacophores	99
Table 3.4	External validation parameters for 3D-QSAR	99

Table 3.5	e-Pharmacophore hypotheses with features scores	100
Table 3.6	Validation of e-pharmacophores with the Güner-Henry scoring method	100
Table 3.7	Number of compounds retrieved at each stage of screening of dataset	101
Table 3.8	Hits with their Glide docking score, number of H-bonds, interaction with essential amino acids, IFD docking score, and AutoDock binding energy	102
Table 3.9	Final hits outcome from respective pharmacophore models	105
Table 3.10	Hit molecules and their physiochemical descriptors determined by Qikprop	108
Table 3.11	Calculated DFT properties of hit molecules	109
Table 3.12.	Inhibitory activity on AChE (<i>electric eel</i>), BuChE (horse serum) and propidium competition assay results	112
Table 3.13	The V_{max} , and K_m values of selected hits at various concentrations	114
Table 3.14	Permeability of hits determined by BBB-PAMPA study	115
Table 3.15	Cell viability, and neuroprotection of hits using SH-SY5Y cell line	115
Table 4.1	e-Pharmacophore hypotheses and feature scores	134
Table 4.2	Validation of e-pharmacophores by Güner-Henry scoring method	135
Table 4.3	Distance between features of e-pharmacophore hypotheses	135
Table 4.4	Compounds retrieved at each stage of screening in dataset	136
Table 4.5	Ligands with better docking score than 2KC after Glide XP docking	137
Table 4.6	Lead molecules and their Glide docking score, number of hydrogen bonds, interacting amino acid residues, and IFD docking score.	138
Table 4.7	Hit molecules and their physiochemical descriptors determined by Qikprop tools	144
Table 5.1	Docking results of 4-oxo, N, 4-diphenylbutanamides against AChE, MAO-A and MAO-B	182
Table 5.2	Docking results of (E)-N-aryl-4-hydroxy-4-phenylbut-2-enamides against AChE, MAO-A and MAO-B	183
Table 5.3	Calculated physiochemical descriptors of 4-oxo, N, 4-diphenyl butanamides using QikProp	185
Table 5.4	Calculated physiochemical properties of (E)-N-aryl-4-hydroxy-4- phenylbut-2-enamides using QikProp	186
Table 5.5	Inhibitory activity of 4-oxo-N, 4-diphenylbutanamides on AChE (<i>electric eel</i>), BChE (horse serum), MAO-A, and MAO-B results	189
Table 5.6	Inhibitory activity of (E)-N-aryl-4-hydroxy-4-phenylbut-2- enamides on AChE (<i>electric eel</i>), BChE (horse serum), rat MAO-	190

	B and hMMP-9	
Table 5.7	Permeability of nine commercial drugs used for validation of	192
	PAMPA-BBB assay	
Table 5.8	Permeability of 4-oxo-N, 4-diphenylbutanamides determined by	193
	BBB-PAMPA study	
Table 5.9	Permeability of (E)-N-aryl-4-hydroxy-4-phenylbut-2-enamides	194
	determined by BBB-PAMPA study	
Table 5.10	Cell viability and neuroprotection of synthesised molecules on the	196
	human neuroblastoma SH-SY5Y Cell Line	
Table A.1	3D-QSAR data set of 155 MMP-9 inhibitors with their activity	215
	(pIC ₅₀), predicted activity, error (the difference between their	
	predicted and actual activity) and fitness to the best	
	pharmacophore selected	
Table A.2	AChE inhibitors with observed and predicted pIC ₅₀ , Canvas	228
	similarity, molecular weight, fitness, and errors	
Table A.3	PAINS assessment of THVS retrieves as AChE inhibitor by	233
	utilizing FAF-Drugs4 server	
Table A.4	PAINS results for HTVS retrieves as TTBK-1 inhibitors by using FAF-	235
	Drugs4	