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Chapter 4: Identification of human tau-tubulin kinase 1 inhibitors 

4.1 Introduction 

Protein kinases play vital role in cellular activation processes, especially in regulation of 

cell signaling pathways and thus serve as valuable therapeutic target for numerous 

diseases [1]. Over 30 kinase inhibitors have gained the market for different 

physiological disorders viz. cancers, fibrosis, and arthritis [2]. The lack of kinase 

inhibitors, for the treatment of neurodegenerative disorders, offers an interesting 

opportunity for drug development. In normal brain, tau phosphoprotein contains 2–3 

moles phosphate per mole of protein. In AD brain, it is abnormally 

hyperphosphorylated by 2–3 folds at various sites i.e.,Thr181, Ser195, Ser198, Ser199, 

Ser202, Thr205, Thr212, Ser214, Thr217, Thr231, Ser235, Ser262, Ser353, Ser396, 

Ser400, Ser404, Ser409, and Ser422 [3, 4]. 

Tau-tubulin kinase (TTBK), a serine/threonine and tyrosine kinase enzyme of casein 

kinase 1(CK-1) superfamily, is implicated in various physiological processes including 

mitosis, ciliogenesis, and neurotransmission, etc. The enzyme has two isoforms: 

TTBK1 and TTBK2, consisting of highly homologous catalytic domains with different 

non-catalytic domains. TTBK1, a neuron specific tau kinase, has molecular weight of 

142.7 kDa, but the full-length protein migrates up to 230 kDa, possibly due to the 

negatively charged polyglutamate region. It is responsible for phosphorylation (both 

Mg
2+

- and Mn
2+

-dependent manner) of tau protein and paired helical filaments (PHFs) 

[5, 6]. The phosphorylations take place at residues Ser198, Ser199, Ser202, and Ser422, 

to facilitate tau aggregation and increase the formation of NFTs in AD [7]. 
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TTBK1 is expressed only in central nervous system (CNS) and induces Cdk5/GSK3β 

(cyclin-dependent kinase 5/glycogen synthase kinase 3β) activation [8], tau aggregation 

[6, 7], and axonal degeneration [9]. TTBK2 is widely distributed, not only in brain but 

also in heart, muscle, liver, thymus, spleen, lung, kidney, testis, and ovaries [10]. It is 

also attributed to tau phosphorylation on residues Ser208 and Ser210 [11], which are 

characteristics of PHFs phosphorylation in brain. Phosphorylation of TTBK1 and 2 is 

also linked to neurodegenerative diseases like AD, ALS, and SCA type 11 [11]. Hence, 

design and development of selective TTBK1 inhibitors are expected to be fruitful and 

possibly lead to safe drug(s) for the treatment of neurodegenerative diseases. 

The structure of TTBK1 resembles other protein kinases with an enriched β-strand N-

terminal domain and an α-helical C-terminal domain. An extended ‘hinge’ region 

(residues 108–111) connects both the terminals. The P-loop (residues 40–49) is part of 

N-terminal domain, while Asp-Phe-Gly (DFG) motif (residues 176–178) and flexible 

activation loop (residues 178–202) are fragments of C-terminal (Figure 4.1A) [11]. The 

superimposed TTBK1-cocrystal ligand, 2KC, complex (PDB4NFN), and apoprotein 

structure (PDB4NFM), appear equivalent in conformation, as well as configuration 

(Figure 4.1B). 

Three reported inhibitors of TTBK1 have strengthened TTBK1 as a new target for the 

treatment of neurodegenerative diseases and their inhibitors as potential drugs. Energy-

optimized structure-based pharmacophore (e-pharmacophore) approach, followed by 

virtual screening of free ‘ZINC15’ database molecules with molecular dynamics (MD) 

simulation assisted us in identifying new TTBK1 inhibitors. The workflow of structure-

based hit(s) identification is straightforward and depicted in Figure 4.2. 
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Figure 4.1 Crystal structures of tau-tubulin kinase 1: A, Structure of TTBK1 with the 

clarification of different regions present in enzyme protein utilizing PDB id: 4NFN; B, 

Superimposed structures of TTBK1-2KC complex (PDB id: 4NFN), and apoprotein 

TTBK1 (PDB id: 4NFM). 

 

 
 

Figure 4.2 Schematic representation of hits identification process as tau-tubulin kinase 

1 inhibitor. 
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4.2 Materials and Methods 

4.2.1 Details of computational work tools 

The details of computational work tools for development of structure-based 

pharmacophore models for screening of the ‘ZINC15’ database and molecular dynamics 

simulations have been elaborated in Chapter 2, Section 2.2.1. 

4.2.2 Development of energy-optimized structure-based pharmacophore 

Five crystal structures, i.e., 4NFN, 4NFM, 4BTK, 4BTJ, and 4BTM, for the kinase 

domain of human TTBK1 (hTTBK1), were obtained from protein data bank (PDB) 

(https://www.rcsb.org). Three X-ray crystal structures of hTTBK1 with inhibitors, were 

selected for development of pharmacophore. The cocrystal ligands of three PDB 

structures viz. 3-{5-[(4-amino-4-methyl piperidin-1-yl)methyl]pyrrolo[2,1-f][1,2,4] 

triazin-4-yl}amino)-5-bromophenol (2KC, IC50 120 nM, PDB id 4NFN, resolution 

1.42Å) [12]; methyl 2-bromo-5-(7H-pyrrolo[2,3-d]pyrimidin-4-ylamino)benzoate (F8E, 

Kd 4.1 μM, PDB id 4BTM, resolution 2.45Å) [13]; and 4-[3-hydroxyanilino]-6,7-

dimethoxyquinazoline (DTQ, Kd 240 nM, PDB id 4BTK, resolution 2.0Å) [13], are 

presented in Figure 4.3. Protein structures were prepared by using Protein Preparation 

Wizard in Maestro 10.1 with an OPLS_2005 force field. The Receptor Grid Generation 

tool in Maestro 10.1 was applied to prepare Grids of all three protein crystal structures 

concentrated at cocrystal ligand. 

 

Figure 4.3 Structures of cocrystal ligands with their PDB ids and resolutions. 
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Cocrystal ligands were refined utilizing LigPrep in Maestro 10.1 with Epik and an 

OPLS_2005 force field and were docked with ‘write XP descriptor information’ to their 

respective prepared protein structures by Glide XP (extra precision) docking. 

Pharmacophoric sites of the cocrystal ligands were arranged based on their Glide XP 

docking’s binding energies and selected for development of pharmacophore model [5]. 

The hydrogen bonds, electrostatic rewards, π–π stackings, π–cations, and other 

interactions were contained within Glide XP descriptors. PHASE v4.2 was applied to 

generate pharmacophore features viz. H-bond donor (D), H-bond acceptor (A), negative 

ionizable (N), positive ionizable (P), hydrophobic group (H), and an aromatic residue 

(R) based on XP energy descriptors. H-bond donor (D) and H-bond acceptor (A) of 

crystal ligands were pictured as vectors, directed to the corresponding H-bond acceptors 

and H-bond donors at the binding site of protein structures respectively. Most favorable 

sites were selected for e-pharmacophore hypothesis development by utilizing excluded 

volume. Initially, maximum ten pharmacophores were set in PHASE v4.2 to develop 

pharmacophore models. The developed models were validated, gradually reduced, and 

most effective one was selected for pharmacophore-based virtual screening. 

4.2.3 Validation of energy-optimized structure-based pharmacophore  

Enrichment factor (EF) and goodness of hit (GH) were calculated (utilizing Equation 

2.1 and 2.2 respectively) from a dataset of compounds, prepared from 1000 drug-like 

decoys (http://www.schrodinger.com/glide_decoy_set). The average molecular weight 

was 400 D (the “dl-400” dataset), and four known TTBK1 inhibitors were validated for 

e-pharmacophore hypotheses. LigPrep in Maestro 10.1 with an OPLS_2005 force field, 

was utilized to prepare ligands database. EF is the fraction of known actives retrieved 

after a screening of decoy database compounds [6]. 
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4.2.4 Pharmacophore-based screening of database 

The ‘drug-like’ compounds from ‘ZINC15’ database were collected (without known 

TTBK1 inhibitors) utilizing Lipinski’s filter. Database molecules were prepared using 

LigPrep with Epik and an OPLS_2005 force field. Compounds, matched with three 

validated e-pharmacophores, were screened out against prepared ‘ZINC15’ database 

molecules using PHASE v4.2 [14]. Compounds with pharmacophore sites’ matching 

score over or equal to 1.5, were selected for further studies. The matching of 

compounds’ conformer on hypothesis based on root mean square deviation (RMSD), 

site matching, vector alignments, and volume terms, expressed as fitness score [15]. The 

tolerance of distance was set up to 2.0 Å as a default set of PHASE for perfect 

matching. PHASE was initialized to rank the pharmacophore matched database in order 

of the fitness score ranging from 0 to 3. The descending fitness scores of 2000 

molecules from highest for each pharmacophore and scores above 1.5, considered as 

suitable inhibitors, were docked into the binding sites of TTBK1 crystal structure [5]. 

4.2.5 Removal of pan-assay interference compounds 

A list of structural features, known as pan-assay interference compounds (PAINS) 

which generate many false positives across screening, was reported by Baell and 

Holloway [16]. Jasial S. et al. reported a large-scale analysis of the behavior of PAINS 

in biological screening assays [17]. ‘ZINC15’ database molecules within groups (A) 

anodyne and (B) clean (PAINS-ok) were selected for virtual screening [18]. Other 

details are depicted in Chapter 2, Section 2.2.8. 

4.2.6 High throughput virtual screening and molecular docking 

The PAINS free e-pharmacophore matched molecules were screened out by high 

throughput virtual screening (HTVS), followed by Glide SP (standard precision) and 

XP (extra precision) docking at the binding sites of respective crystal structures with 
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Glide, Maestro 10.1. The cocrystal ligand was centralized for grid generation using Grid 

Generation tools in Glide. Post-docking MM-GBSA (molecular mechanics energies 

combined with the generalized Born and surface area) minimization was executed to 

optimize the geometries of retrieves out, and top 10% of retrieves out from each step 

were selected for the next level. Finally, all the non-peptide retrieves (peptide 

compounds are orally degradable) were executed to Glide XP molecular docking, 

utilizing 4NFN crystal structure to estimate the docking score of selected retrieves. 

4.2.7 Induced fit docking 

A mixed molecular docking and dynamics method, known as induced fit docking (IFD) 

[19], where the receptor is flexible in the docking study, has been performed. The 

prepared hits were docked to the rigid protein using Glide, Maestro10.1 with ligand and 

protein van der Waals (vdW) scaling 0.5 as default setting. Energy minimization was 

applied on TTBK1 (PDB: 4NFN) crystal structure. The energy minimization of protein 

structure was performed using OPLS_2005 force-field. The Glide XP was used for the 

initial docking, and 20 ligand poses were maintained for protein structural refinement. 

Prime, Schrödinger 2015-1, was utilized to refine residues within 5.0 Å of ligand poses 

and induced-fit protein-ligand complexes were developed. After refinements of side-

chain and backbone [20], ranking of each of the 20 complexes was done by Prime 

energy. The complex structures within 30 kcal mol
−1

 (ranking) were redocked for the 

last stage of Glide docking and scoring. Every ligand was docked into each refined low-

energy receptor structure, developed in the refinement step. The binding affinity of each 

complex was estimated in the Docking Score. The higher negative Docking Score is 

considered as more favorable binding with active site of TTBK1. 
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4.2.8 ADME properties and blood-brain barrier permeability prediction 

The QikProp in Maestro 10.1 [21] was utilized to predict ADME properties and blood-

brain barrier (BBB) permeability of the hits. The neutralization of molecules and 

development of descriptors were not achieved in the normal mode. Therefore, 

neutralization of all retrieves was crucial before carrying out QikProp. It predicted 44 

significant physicochemically and pharmaceutically applicable descriptors, including 

principle descriptors, physiochemical properties, log P (octanol/water), QP%, log 

HERG, Caco-2 cell membrane permeability, MDCK cell permeability, skin 

permeability log Kp and Lipinski’s rule of five, which were essential for rational drug 

design [22, 23]. Predicted brain/blood partition coefficient, QPlogBB was crucial for 

BBB permeability of compounds. 

4.2.9 Molecular dynamics simulation 

Molecular dynamics (MD) simulations is a computer simulation method for studying 

the physical movements of atoms and molecules in a biophysical system. The 

trajectories of atoms and molecules are resolved by numerically solved Newton's 

equations of motion for a system of interacting particles, where forces within the 

particles and their potential energies are often calculated using interatomic potentials or 

molecular mechanics (MM) force fields [24]. 

MD simulations of selected four hits and cocrystal ligand were performed using 

Desmond v4.3 with the OPLS_2005 force field to develop all peptide interactions [25, 

26]. The protein-ligand docked complex (.pv file) from XP docking was taken for 

salvation by applying open TIP3P (transferable intermolecular potential with 3 points) 

water model in an orthorhombic box of dimension 20×20×20 Å. Protein-ligand 

complexes had 12 overall negative charges, but 4NFN with crystal ligand had total 13 
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negative charges and was neutralized by adding Na
+
 counter ion for simulation. Others 

methods details are depicted in Chapter 2, Section 2.2.20. 

4.3 Results and Discussion 

4.3.1 Development of energy-optimized structure-based pharmacophore 

The crystal structures of TTBK1 with cocrystal inhibitors were selected from PDB. 

Three crystal structures with TTBK1 inhibitors (IC50 120 nM, Kd 240 and 4100 nM) 

were selected for generating e-pharmacophore hypotheses. Protein preparation wizard, 

Maestro10.1 was utilized to prepare the proteins with force field OPLS_2005. The 

RMSD between cocrystallized ligand and docked ligand was 1.24. The amino acid 

residues’ interactions of refined protein structures with cocrystal ligands and docked 

ligands were similar. Only the distance of H-bonding was slightly changed, and 

interactions of cocrystal ligands are depicted in Figure 4.4. The refined ligands were 

docked onto the respective prepared protein structures to develop structure-based 

pharmacophore hypotheses. The mapping of Glide XP energetic terms onto 

pharmacophore sites generated e-pharmacophore hypotheses were calculated by 

structural and energy information between protein and ligand. The number of possible 

pharmacophore sites and number of accepted pharmacophore sites were four for protein 

structure 4NFN and five for 4BTM. For crystal structure 4BTK, number of possible 

pharmacophoric sites was six, but number of accepted sites was five. The generated 

pharmacophore hypotheses for three protein structures were ADRR, ADRRR, and 

ADRRR, and pharmacophoric feature scores were between −2.17 to −0.33 (Table 4.1). 

4.3.2 Validation of energy-optimized structure-based pharmacophore 

The enrichment factor (EF) and Goodness of hit score (GH) were evaluated to validate 

the developed e-pharmacophores for further virtual screening.  The decoy set consisted 
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of 1004 molecules in which four were TTBK1 inhibitors. The Güner-Henry scoring 

method was used to validate the models, and GH values of three pharmacophore models 

were greater than 0.6 (Table 4.2). All the values of parameters ensured that hypotheses 

were suitable for pharmacophore-based high throughput virtual screening. The distance 

between the features of e-pharmacophores was between1.376 to 9.263 Å (Table 4.3). 

Three e-pharmacophore hypotheses, selected after validation, are pictured (Figure 4.5) 

with features and their distances. 

Table 4.1 e-Pharmacophore hypotheses and feature scores 

PDB No. of 

possible 

Site 

No. of 

accepted 

site 

Hypotheses
[a]

 Pharmacophore features with score 

4NFN 4 4 ADRR A2: −1.29, D6: −1.42, R9: −0.86, R10: 

−0.64 

4BTM 5 5 ADRRR A2: −2.17, D6: −2.17, R8: −1.13, R9: 

−0.92, R10: −0.61 

4BTK 6 5 ADRRR A2: −1.42, D6: −0.33, R10: −0.92, 

R11: −0.88, R12: −1.47 

[a]
A, hydrogen bond acceptor; D, hydrogen bond donor; R, aromatic ring. 

 

 

Figure 4.4 Residues of crystal structures of tau-tubulin kinase 1 involved with binding 

interactions of cocrystal ligands (yellowish green). 
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Figure 4.5 e-Pharmacophore models with respective crystal structures. ‘A’ denotes 

hydrogen bond acceptor, pink sphere with arrow; ‘D’ indicates hydrogen bond donor, 

sky blue sphere containing arrow; ‘R’ denotes aromatic ring, yellow circle. 

Table 4.2 Validation of e-pharmacophores by Güner-Henry scoring method 

[a]
Overall enrichment factor; 

[b]
Goodness of hit score; 

[C]
Boltzmann-enhanced discrimination of 

receiver operating characteristic; 
[d]

Receiver operating characteristic; 
[e]

curve value; 
[f]

Robust 

initial enhancement; 
[g]

Area under accumulation curve. 

Table 4.3 Distance between features of e-pharmacophore hypotheses 

Pharmacophore 

model
[a]

 

Distance from A 

to D (Å) 

Distance from A 

to R (Å) 

Distance from 

D to R (Å) 

Distance from 

R to R (Å) 

4NFN-ADRR 2.816 1.435 

6.326 

3.456 

7.162 

4.994 

4BTM-ADRRR 2.798 2.572 

1.437 

6.409 

2.183 

3.437 

8.353 

2.133 

6.383 

5.102 

4BTK-ADRRR 9.386 1.376 

2.766 

6.325 

8.105 

9.263 

3.309 

2.413 

5.072 

6.563 

[a] 
PDB used for respective models; A, hydrogen bond acceptor; D, hydrogen bond donor; R, 

aromatic ring. 

Parameter 4BTK 4BTM 4NFN 

EF
[a]

 6.3 4.38 9.06 

GH
[b]

 1.63 1.47 1.9 

BEDROC(α=8.0)
[C]

 0.216 0.127 0.282 

BEDROC(α=20.0) 0.142 0.066 0.213 

BEDROC(α=160.9) 0.116 0.017 0.249 

ROC
[d]

 0.63 0.56 0.64 

RIE
[e]

 2.20 1.03 3.46 

AUAC
[f]

 0.63 0.56 0.63 



Chapter 4 

 
 

Page | 136 

4.3.3 High throughput virtual screening and molecular docking 

Pharmacophore matched, PAINS free compounds were considered for HTVS to identify 

hits. Molecular SP and XP dockings were performed by using total 57 HTVS retrieves 

with 4NFN crystal structure, to compare docking scores. The number of hits from 

pharmacophore-based virtual screening and final selected hits with their respective PDB 

are presented in Table 4.4. The 22 hits (Table 4.5) obtained, after XP docking with 

4NFN, had comparatively better docking scores than cocrystal ligand, 2KC. But four 

hits, i.e., 6-Hydroxyluteolin 7,3'-dimethyl ether; 3-phenyl-2-(9H-purin-6-ylamino) 

propan-1-ol; 1-[3-(6-aminopurin-9-yl)propyl]-3-methyl-pyridin-2-one; and N-[(4-

ethoxy-3-fluoro-phenyl)methyl]-7H-purin-6-amine (ZINC14644839, ZINC00012956, 

ZINC91332506, and ZINC69775110 respectively) with diverse structures,, PAINS free 

(except ZINC00012956, a PAINS-ok compound), best docking scores (−10.71 to −8.48 

kcal mol
−1

) and Glide energies (−50.99 to −45.16 kcal mol
−1

) were selected for studies 

(Table 4.5). 

Table 4.4 Compounds retrieved at each stage of screening in dataset 

Pharmacophore 

model 

PDB 

id 

PHASE find 

matches hits 

HTVS 

hits 

SP 

hits 

XP 

hits 

Final selected hits  

ADRR 4NFN 2000 1942 193 19 ZINC00012956 

ADRRR 4BTM 2000 1946 197 19 ZINC91332506 

ZINC69775110 

ADRRR 4BTK 2000 1929 194 19 ZINC14644839 

 

The number of H-bonding interactions with name and number of interacting residues of 

protein with hits and cocrystal ligands in ligand-protein is tabulated in Table 4.6. The e-

pharmacophore of 4NFN afforded one hit, ZINC00012956, and 4BTK yielded 

ZINC14644839, whereas, e-pharmacophore of 4BTM provided two hits, i.e., 

ZINC91332506, and ZINC69775110. Chemical structures of selected hits as TTBK1 

inhibitor are drawn in Figure 4.6. Gln110, the most important residue at the binding site 



Chapter 4 

 

Page | 137  

of TTBK1, produced H-bond interaction with all four hits as well as with 2KC. H-

bonding interaction of residue Glu77 with 2KC (Figure 7A, and C) and 

ZINC14644839 are also depicted (Figure 8A, and C). Compound ZINC00012956 

(Figure 9A, and C) interacted through different hydrogen bonding to ASP176, 

whereas, ZINC91332506 (Figure 10A, and C) formed H-bonding with Gly111, and 

ZINC69775110 (Figure 11A, and C) had binding only with Gln110. 

Table 4.5 Ligands with better docking score than 2KC after Glide XP docking 

Compound Fitness Align score Docking score Glide energy (Kcal mol
−1

) 

ZINC14644839 1.728 0.632 −10.505 −52.819 

ZINC89596336 2.073 0.319 −9.772 −46.131 

ZINC05999143 1.75 0.619 −9.453 −49.052 

ZINC18185774 1.974 0.602 −9.369 −42.645 

ZINC17887543 2.078 0.601 −9.368 −43.072 

ZINC00012956 1.85 0.712 −9.317 −40.653 

ZINC40591228 2.067 0.258 −9.298 −45.85 

ZINC75056181 2.012 0.37 −9.293 −37.424 

ZINC81004092 1.851 0.653 −9.286 −48.589 

ZINC81004171 1.821 0.538 −9.184 −47.723 

ZINC09135015 2.164 0.413 −9.08 −42.448 

ZINC08553676 1.707 0.716 −8.97 −46.327 

ZINC69775110 2.055 0.546 −8.956 −44.481 

ZINC69742848 1.868 0.581 −8.878 −41.467 

ZINC21992187 1.891 0.622 −8.845 −45.62 

ZINC00057845 2.099 0.604 −8.686 −41.676 

ZINC91332506 1.963 0.534 −8.533 −43.655 

ZINC91332538 1.629 0.732 −8.519 −41.044 

ZINC16758238 2.436 0.205 −8.491 −34.957 

ZINC47511172 2.036 0.54 −8.466 −39.994 

ZINC80981223 1.844 0.411 −8.448 −54.157 

ZINC80944903 2.316 0.293 −8.429 −39.414 

 

4.3.4 Induced fit docking 

Induced fit docking (IFD) scores of all hits manifested better results than the Glide XP 

docking scores (Table 4.6). The conformations generated from IFD were similar to the 
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docked poses produced from rigid receptor docking. The Glide-based model provided 

an RMSD of 4.2 Å for TTBK1, when correlated to the native pose in TTBK1 structure. 

IFD docking scores of selected hits had better binding energies than 2KC. The number 

and pattern of H-bond interactions produced after IFD (Figure 4.7B, 4.8B, 4.9B, 4.10B, 

and 4.11B), were almost similar to Glide XP docking arrangement. Only compounds 

ZINC91332506, and ZINC69775110 formed additional hydrogen bonding with Gly111 

amino acid residue, which also increased overall bonding energies. 

 

Figure 4.6 Structures (with Zinc database ids) of final identified hits as tau-tubulin 

kinase 1 inhibitors 

Table 4.6 Lead molecules and their Glide docking score, number of hydrogen bonds, 

interacting amino acid residues, and IFD docking score 

Compound
[a]

 Glide 

docking 

score 

Glide 

energy 

Residue 

interactions
[b]

 

H-

bond 

Glide 

effective 

state 

penalty 

IFD 

docking 

score 

IFD score 

ZINC14644839 −10.71 −50.99 Glu77, 

Gln110, 

Gly111, 

Asn113 

4 0 −11.29 −679.90 

ZINC00012956 −8.74 −44.33 Gln110, 

Asp176 

3 0.021 −11.01 −678.94 

ZINC91332506 −8.67 −42.48 Gln110, 

Gly111 

2 0 −9.81 −677.49 

ZINC69775110 −8.48 −45.16 Gln110 2 0.021 −8.07 −676.89 

2KC
[C]

 −8.37 −43.66 Glu77, 

Gln110, 

Asn159, 

Asp176 

3 0.319 −9.44 −678.24 

[a]
Compounds as per Zinc id, 

[b]
H-Bond interaction, 

[C]
2KC, Cocrystal ligand of 4NFN crystal 

structure. 
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Figure 4.7 Representations for cocrystal ligand 2KC: A, Glide XP docking pose (ligand 

in yellow); B, Induced fit docking pose (ligand in cyan); C, Glide XP docking 2d pose; 

D, TTBK1 protein’s residue interactions with 2KC after MD simulations, E, RMSD plot 

of RMSD values for protein on the left y-axis and ligand on right y-axis were displayed, 

protein backbone in bottle green color, and ligand in maroon; F, RMSF of the protein C-

α chain in 2KC-TTBK1 complex.  
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Figure 4.8 Representation for cocrystal ligand ZINC14644839: A, Glide XP docking 

pose (ligand in yellow); B, Induced Fit docking pose (ligand in cyan); C, Glide XP 

docking 2d pose; D, TTBK1 protein’s residue interactions with ZINC14644839 after 

MD simulations; E, RMSD plot of RMSD values for protein on the left y-axis and 

ligand on right y-axis were displayed, protein backbone in bottle green, and ligand in 

maroon. F, RMSF of the protein C-α chain in ZINC14644839-TTBK1 complex.  



Chapter 4 

 

Page | 141  

 

Figure 4.9 Representation for co-crystal ligand ZINC00012956: A, Glide XP docking 

pose (ligand in yellow); B, Induced Fit docking pose (ligand in cyan); C, Glide XP 

docking 2d pose; D, TTBK1 protein’s residue interactions with ZINC00012956 after 

MD simulations; E, RMSD plot of RMSD values for protein on the left y-axis and 

ligand on right y-axis were displayed, protein backbone in bottle green, and ligand in 

maroon. F, RMSF of the protein C-α chain in ZINC00012956-TTBK1 complex.  



Chapter 4 

 
 

Page | 142 

 

Figure 4.10 Representation for cocrystal ligand ZINC91332506: A, Glide XP docking 

pose (ligand in yellow); B, Induced Fit docking pose (ligand in cyan); C, Glide XP 

docking 2d pose; D, TTBK1 protein’s residue interactions with ZINC91332506 after 

MD simulations; E, RMSD plot of RMSD values for protein on the left y-axis and 

ligand on right y-axis were displayed, protein backbone in bottle green, and ligand in 

maroon. F, RMSF of the protein C-α chain in ZINC91332506-TTBK1 complex.  
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Figure 4.11 Representation for cocrystal ligand ZINC69775110: A, Glide XP docking 

pose (ligand in yellow); B, Induced Fit docking pose (ligand in cyan); C, Glide XP 

docking 2d pose; D, TTBK1 protein’s residue interactions with ZINC69775110 after 

MD simulations; E, RMSD plot of RMSD values for protein on the left y-axis and 

ligand on right y-axis were displayed, protein backbone in bottle green, and ligand in 

maroon; F, RMSF of the protein C-α chain in ZINC69775110-TTBK1 complex. 
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4.3.5 Predicted ADME properties and blood-brain barrier permeability 

The pharmacokinetics including absorption, distribution, metabolism, and excretion 

(ADME) were predicted by utilizing QikProp tools of Maestro 10.1. The druggable 

properties of hits were calculated by analyzing the descriptors physiochemically and 

pharmaceutically relevant properties (Table 4.7). All the hit molecules revealed good 

partition coefficients (QPlogPo/w) values (1.38 to 2.65), which were necessary for 

absorption and distribution of drugs inside body. It is an apparent Caco-2 cell 

permeability in nm s
−1 

value, a factor for the evaluation of cell permeability through 

biological membranes. The water solubility (QP log S) ranged between −4.09 to −2.93,  

Table 4.7 Hit molecules and their physiochemical descriptors determined by Qikprop 

tools 

Compound
[a]

 QPlog 

Po/w
[b]

 

QPlog 

S
[c]

 

QPlogH

ERG
[d]

 

QPPC

aco
[e]

 

QPPM

DCK
[f]

 

QPlog

BB
[g]

 

tPSA
[h]

 QPlog

Kp
[i]

 

% Oral 

Abs.
[j]

 

ZINC14644839 2.07 −3.87 −5.13 206.35 89.85 −1.42 109 −3.58 80.482 

ZINC00012956 1.59 −2.93 −5.49 383.26 175.4

5 

−1.18 86 −2.60 82.472 

ZINC91332506 1.38 −3.29 −5.31 287.79 128.7

2 

−1.29 92 −3.23 79.018 

ZINC69775110 2.65 −4.09 −5.72 997.24 709.8

4 

−0.72 76 −2.07 96.138 

Recommended values: 
[a]

Zinc database id and follow the Rule of Five and Rule of Three; 
[b]

QPlog Po/w for octanol/water (−2.0 to 6.5); 
[c]

QPlog S: Predicted aqueous solubility; S in mol 

dm
−3

 (−6.5 to 0.5); 
[d]

 log HERG: HERG K
+
 channel blockage (<−5); 

[e] 
Apparent Caco-2 cell 

permeability (nm/s) (<25 poor, >500 great); 
[f]

 Apparent MDCK permeability (nm/s) (<25 poor, 

>500 great); 
[g]

QPlogBB: brain/blood partition coefficient (–3.0 to 1.2); 
[h]

tPSA: total polar 

surface area(Å
2
); 

[i]
QPlogKp: skin permeability (–8.0 to –1.0);

[j]
% Human oral absorption 

(>80% is high and <25% is poor). 

and plogHERG values were less than −5 (−5.13 to −5.72). Hence these could be weaker 

inhibitors of HERG receptor. The pMDCK (cell-permeable parameter) values were 

between 89.85 to 709.84, and skin permeability (logKp) values were within −2.07 to 

−3.58, tPSA values were between 76 to 109Å
2
. Predicted brain/blood partition 

coefficient values of hits were −0.72 to −1.42. BBB permeable parameter values of hits 

are within accepted range (–3.0 to 1.2) for CNS drugs. The percentage of human oral 

absorption of molecules was 79.02 to 96.12%, i.e., within the acceptable range for 
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human use. All the hits possessed entire pharmacokinetic demand for drug-like 

molecules and followed Lipinski’s rule of five as well as rule of three. In conclusion, 

the hits had better binding interaction than known inhibitor, 2KC and acceptable 

predicted pharmacokinetic properties and BBB permeability. 

4.3.6 Molecular dynamics simulation 

The binding modes of cocrystal ligand and protein were obtained from crystallization 

(PDB); hence the original ligands were more relevant to analyze the identified hits as 

TTBK1 inhibitors. Although, docking poses developed by Glide, were acceptable and 

the best poses of ligand-protein interactions were perfect, but were not satisfactory for 

prediction. A combination of XP docking, IFD and MD simulation of hits were well 

indicated for stable protein-ligand interactions. The improved docked ligand-protein 

complexes of all hits by MD, indicated that the selected molecules had a better binding 

affinity towards TTBK1 than 2KC (Figure 4.7D, 4.8D, 4.9D, 4.10D, and 4.11D). The 

pattern and number of interactions of hits (ZINC14644839, ZINC00012956, 

ZINC91332506, and ZINC69775110) and 2KC with TTBK1 were almost identical from 

XP docking, IFD, and MD simulation studies. The RMSD of the protein backbone C-α 

atoms and inhibitor, root mean square fluctuation (RMSF) in the isolated amino acid 

side chain and ligand-TTBK1 interactions were recorded for a period of 50 ns 

simulation. The energy of dynamics for ligand-protein complexes was stabilized after 

10ns simulation. Robustness and accuracy of MD simulations were indicated by 

constant temperature, pressure, volume, and potential energy of the complex during the 

last 40 ns simulation. The RMSD of protein backbone C-α along with the ligand RMSD 

values, between 0.5 and 3.5Å, indicated the stability of ligand-TTBK1 complexes 

during simulation. The RMSD plot of RMSD values for protein on the left y-axis and 

ligand on right y-axis are displayed in Figures 4.7E, 4.8E, 4.9E, 4.10E, and 4.11E with 
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protein backbone in green, and ligand in maroon. The mean RMSD value for 

ZINC00012956-TTBK1 (1.05Å), ZINC14644839-TTBK1 (1.25Å), and 

ZINC69775110-TTBK1 (1.25Å) complexes were lower than 2KC-TTBK1 (1.35Å), 

whereas the value for ZINC91332506-TTBK1 (1.6 Å) was higher. The RMSF of single 

amino acid residues throughout the simulation process for all hits and 2KC were below 

4.0 Å and were indicative of a lower degree of conformational changes in the side 

chains. RMSF helped to characterize local changes along the protein chain C-α and 

peaks denoted the area of protein that fluctuated most during the simulation (Figures 

4.7F, 4.8F, 4.9F, 4.10F, and 4.11F). 

MD study explored that ZINC14644839 interacted with Glu77, Gln110, Gly111, and 

Asn113 by direct H-bonding; ZINC00012956 strongly connected Gln110 with direct 

hydrogen bonding, whereas Lys63, and Asp176 with H-bond formation through a water 

molecule; ZINC91332506 formed direct hydrogen bonding with Gln110, and H-

bonding through a water molecule with Lys63, and Glu77. ZINC69775110 developed 

direct double hydrogen bonding with Gln110 and, 2KC interacted Glu77 and Gln110 

with direct H-bond formation and Asp176 with hydrogen bonding through a water 

molecule. The interactions of 2KC observed in simulation were fully matched with 

crystallized structure.MD simulation also supported that the ligands were mostly 

interacting with protein at Glu77, Gln110, and Asp176 amino acid residues. 

4.4 Conclusions 

The multiple structure-based pharmacophores integrated with MD simulations afforded 

ZINC14644839, ZINC00012956, ZINC91332506, and ZINC69775110 as novel 

TTBK1 inhibitors. The XP docking, IFD and MD simulation studies established that the 

hits produced stable H-bonding interactions with Gln110, Gly111, Glu77, Asn113, and 
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Asp176; TTBK1 inhibitor, 2KC, developed hydrogen bonding with Gln110, Asp176, 

Asn159, and Glu77. The compounds possibly prevent formation of NFTs by inhibiting 

phosphorylation and aggregation of tau protein and PHFs. Therefore, the hits have 

prospect to be essential drugs with acceptable ADME properties for the treatment of AD 

and other neurodegenerative diseases. 
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